
Chapter 3 Modeling Loss Severity

A short course authored by the Actuarial Community



3.1 Basic Distributional Quantities



Overview

In this section, we learn how to define some basic distributional
quantities:

▶ 3.1.1 moments,
▶ 3.1.2 percentiles, and
▶ 3.1.3 generating functions.



Moments – Raw Moments

▶ Let X be a continuous random variable with probability
density function (pdf) fX (x) and distribution function FX (x).

▶ The k-th raw moment of X , denoted by µ′
k , is the expected

value of the k-th power of X , provided it exists.
▶ The first raw moment µ′

1 is the mean of X usually denoted by
µ.

▶ The formula for µ′
k is given as

µ′
k = E

(
X k

)
=

∫ ∞

0
xk fX (x) dx .



Moments – Central Moments

▶ The k-th central moment of X , denoted by µk , is the expected
value of the k-th power of the deviation of X from its mean µ.

▶ The formula for µk is given as

µk = E
[
(X − µ)k

]
=

∫ ∞

0
(x − µ)k fX (x) dx .

▶ The second central moment µ2 defines the variance of X ,
denoted by σ2. The square root of the variance is the
standard deviation σ.



Moments – Skewness and Kurtosis

▶ The ratio of the third central moment to the cube of the
standard deviation

(
µ3/σ3)

defines the coefficient of skewness
which is a measure of symmetry.

▶ A positive coefficient of skewness indicates that the
distribution is skewed to the right (positively skewed).

▶ The ratio of the fourth central moment to the fourth power of
the standard deviation

(
µ4/σ4)

defines the coefficient of
kurtosis.

▶ The normal distribution has a coefficient of kurtosis of 3.
▶ Distributions with a coefficient of kurtosis greater than 3 have

heavier tails than the normal, whereas distributions with a
coefficient of kurtosis less than 3 have lighter tails and are
flatter.



Quantiles

▶ When the distribution of X is continuous, for a given fraction
0 ≤ p ≤ 1 the corresponding quantile is the solution of the
equation

FX (πp) = p.

▶ For example, the middle point of the distribution, π0.5, is the
median.

▶ A percentile is a type of quantile; a 100p percentile is the
number such that 100 × p percent of the data is below it.



Skewness, Mean, and Median
▶ The relationship between mean and median under different

skewness1.

Figure 1: Different Skewness

1By Diva Jain - https://codeburst.io/2-important-statistics-terms-you-
need-to-know-in-data-science-skewness-and-kurtosis-388fef94eeaa, CC BY-SA
4.0, https://commons.wikimedia.org/w/index.php?curid=84219892

https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-and-kurtosis-388fef94eeaa
https://codeburst.io/2-important-statistics-terms-you-need-to-know-in-data-science-skewness-and-kurtosis-388fef94eeaa
https://commons.wikimedia.org/w/index.php?curid=84219892


Moment Generating Function

▶ The moment generating function (mgf), denoted by MX (t)
uniquely characterizes the distribution of X .

▶ The moment generating function is given by

MX (t) = E
(
etX

)
=

∫ ∞

0
etxfX (x) dx

for all t for which the expected value exists.
▶ The mgf is a real function whose k-th derivative at zero is

equal to the k-th raw moment of X . In symbols, this is

dk

dtk MX (t)
∣∣∣∣∣
t=0

= E
(
X k

)
.



Probability Generating Function

▶ One can also use the moment generating function to compute
the probability generating function

PX (z) = E
(
zX

)
= MX (log z) .

▶ The probability generating function is more useful for discrete
random variables.



Exercise for 3.1.1

▶ Data: Anscombe’s quartet, anscombe
▶ Variables: y1, y2, y3, and y4
▶ R functions: summary, mean, var, and sd



Exercise for 3.1.2

▶ Data: Wisconsin Property Fund data, Insample_nz
▶ Variables: It includes claim values y as well as the claim year

Year. For this exercise we will work with the natural
logarithm of the claim values which are in the lny variable.
We have filtered the data to exclude zero claims.

▶ R functions: boxplot and quantile



Boxplot

Below is an illustration of a boxplot2.

2Boxplots. (2020, August 11). Retrieved June 15, 2021, from
https://stats.libretexts.org/@go/page/3976 “Boxplots” by Danielle Navarro,
LibreTexts is licensed under CC BY-SA .

https://stats.libretexts.org/@go/page/3976


Exercise for 3.1.3

▶ Moment generating function for a gamma distribution
▶ R functions: parse, class, eval, D



Review

In this section, we learnt how to define some basic distributional
quantities:

▶ moments,
▶ percentiles, and
▶ generating functions.
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3.2 Continuous Distributions for Modeling Loss
Severity



Overview

In this section, you learn how to define and apply four fundamental
severity distributions:

▶ gamma,
▶ Pareto,
▶ Weibull, and
▶ generalized beta distribution of the second kind.



Gamma Distribution (1)

▶ The continuous variable X is said to have the gamma
distribution with shape parameter α and scale parameter θ if
its probability density function is given by

fX (x) = (x/θ)α

x Γ (α) exp (−x/θ) for x > 0.

Note that α > 0, θ > 0.
▶ When α = 1 the gamma reduces to an exponential

distribution.
▶ When α = n

2 and θ = 2 the gamma reduces to a chi-square
distribution with n degrees of freedom.



Gamma Distribution (2)
Gamma Densities. The left-hand panel is with shape=2 and
varying scale. The right-hand panel is with scale=100 and varying
shape.
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Gamma Distribution (3)

▶ The distribution function of the gamma model is the
incomplete gamma function, denoted by Γ

(
α; x

θ

)
, and defined

as
FX (x) = Γ

(
α; x

θ

)
= 1

Γ (α)

∫ x/θ

0
tα−1e−t dt,

with α > 0, θ > 0. For an integer α, it can be written as
Γ
(
α; x

θ

)
= 1 − e−x/θ ∑α−1

k=0
(x/θ)k

k! .



Gamma Distribution (4)

▶ The k-th raw moment of the gamma distributed random
variable for any positive k is given by

E
(
X k
)

= θk Γ (α + k)
Γ (α) .

▶ The mean and variance are given by E (X ) = αθ and
Var (X ) = αθ2, respectively.

▶ Since all moments exist for any positive k, the gamma
distribution is considered a light tailed distribution.



Pareto Distribution (1)

▶ A positively skewed and heavy-tailed distribution
▶ For extreme insurance claims, the tail of the severity

distribution (losses in excess of a threshold) can be modeled
using a Generalized Pareto distribution.

▶ The continuous variable X is said to have the (two parameter)
Pareto distribution with shape parameter α and scale
parameter θ if its pdf is given by

fX (x) = αθα

(x + θ)α+1 x > 0, α > 0, θ > 0.



Pareto Distribution (2)
Pareto Densities. The left-hand panel is with scale=2000 and
varying shape. The right-hand panel is with shape=3 and varying
scale.
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Figure 1: (ref:Paretopdf)



Pareto Distribution (3)
▶ The distribution function of the Pareto distribution is given by

FX (x) = 1 −
(

θ

x + θ

)α

x > 0, α > 0, θ > 0.

▶ The k-th raw moment of the Pareto distributed random
variable exists, if and only if, α > k. If k is a positive integer
then

E
(
X k
)

= θk k!
(α − 1) · · · (α − k) α > k.

▶ The mean and variance are given by

E (X ) = θ

α − 1 for α > 1

and
Var (X ) = αθ2

(α − 1)2 (α − 2)
for α > 2,

respectively.



Weibull Distribution (1)
▶ The continuous variable X is said to have the Weibull

distribution with shape parameter α and scale parameter θ if
its pdf is given by

fX (x) = α

θ

(x
θ

)α−1
exp

(
−
(x

θ

)α)
x > 0, α > 0, θ > 0.

▶ The shape parameter α describes the shape of the hazard
function of the Weibull distribution. The hazard function is a
decreasing function when α < 1 (heavy tailed distribution),
constant when α = 1 and increasing when α > 1 (light tailed
distribution).

▶ The distribution function of the Weibull distribution is given
by

FX (x) = 1 − exp
(

−
(x

θ

)α )
x > 0, α > 0, θ > 0.



Weibull Distribution (2)

▶ The k-th raw moment of the Weibull distributed random
variable is given by

E
(
X k
)

= θk Γ
(

1 + k
α

)
.

▶ The mean and variance are given by

E (X ) = θ Γ
(

1 + 1
α

)
and

Var(X ) = θ2
(

Γ
(

1 + 2
α

)
−
[
Γ
(

1 + 1
α

)]2
)

,

respectively.



The Generalized Beta Distribution of the Second Kind (1)

▶ A four-parameter, very flexible, distribution
▶ The continuous variable X is said to have the GB2 distribution

with parameters σ, θ, α1 and α2 if its pdf is given by

fX (x) = (x/θ)α2/σ

xσ B (α1, α2)
[
1 + (x/θ)1/σ

]α1+α2
for x > 0,

σ, θ, α1, α2 > 0, and where the beta function B (α1, α2) is defined
as

B (α1, α2) =
∫ 1

0
tα1−1 (1 − t)α2−1 dt.



The Generalized Beta Distribution of the Second Kind (2)

▶ The GB2 provides a model for heavy as well as light tailed
data.

▶ It includes the exponential, gamma, Weibull, Burr, Lomax, F,
chi-square, Rayleigh, lognormal and log-logistic as special or
limiting cases.

▶ Suppose that G1 and G2 are independent random variables
where Gi has a gamma distribution with shape parameter αi
and scale parameter 1. Then, the random variable
X = θ

(
G1
G2

)σ
has a GB2 distribution.

▶ When the moments exist, one can show that the k-th raw
moment of the GB2 distributed random variable is given by

E
(
X k
)

= θk B (α1 + kσ, α2 − kσ)
B (α1, α2) , k > 0.



Exercise 3.2.1

▶ Data: Wisconsin Property Fund. We have read the data and
created a vector of the log of non-zero claim values. The
name of that vector is wisc_prop.

▶ Use the hist function to plot a histogram.
▶ Use the str function to review the elements of the list

returned by the histogram function.
▶ R functions: hist and str.



Exercise 3.2.2

▶ Data: same as Exercise 3.2.1
▶ Aim: develop an intuition as to whether a gamma distribution

is likely to fit this data reasonably well.
▶ Plot the histogram and specify the probability argument so as

to plot probability densities; calculate shape and scale
parameters using the method of moments.

▶ R functions: hist, dgamma, and curve.



Exercise 3.2.3

▶ Aim: write your own function to find the density (the pdf) of
a random variable that follows a Pareto distribution.

▶ R function: function.



Review

In this section, you learnt how to define and apply four
fundamental severity distributions:

▶ gamma,
▶ Pareto,
▶ Weibull, and
▶ generalized beta distribution of the second kind.
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Methods of Creating New Distributions I



Creating Severity Distributions

I In this section, we consider two main approaches to creating
new distributions.

I Approach 1: We consider distributions that are created by
transforming the random variable of a distribution:
I Multiplication by a constant (Y = cX )
I Raising to a power (Y = X τ )
I Exponentiation (Y = eX )

I Approach 2 (next video): We consider ways of combining
distributions to form a distribution of interest:
I Mixing
I Splicing



Multiplication by a Constant

I Multiplying a random variable by a positive constant
I Think of X as this year’s losses and assume that we have an 8%

inflation rate. We can model next year’s losses as Y = 1.08X
I Can readily go from dollars to thousands of dollars

(c = 1/1000) or from dollars to Euros
I More generally, let Y = cX and use

FY (y) = Pr(Y ≤ y) = Pr
(

X ≤ y
c

)
= FX

(y
c

)
fY (y) = 1

c fX
(y

c

)



Scale Distributions

I In a scale distribution, the transformed variable Y = cX has a
distribution from the same family as the random variable X

I Many loss distributions are scale distributions
I Typically, one uses θ as the scale parameter

If X comes from a distribution with parameter θ, then Y = cX has
the same distribution with scale parameter θ∗ = cθ

I Gamma distribution is an example of a scale distribution



Raising to a Power
I Consider Y = X τ . We examine three cases:

I Case 1: τ > 0 (transformed). Consider the transformation Y = X τ ,
then we have

FY (y) = Pr(Y ≤ y) = Pr (X τ ≤ y) = Pr
(

X ≤ y1/τ
)

= FX

(
y1/τ

)
fY (y) = 1

τ
y (1/τ)−1 fX

(
y1/τ

)
I Case 2: τ < 0 (inverse transformed). We have

FY (y) = Pr(Y ≤ y) = Pr (X τ ≤ y) = Pr
(

X ≥ y1/τ
)

= 1 − FX

(
y1/τ

)
fY (y) =

∣∣∣∣1τ
∣∣∣∣ y (1/τ)−1 fX

(
y1/τ

)
I Case 3: τ = −1 (inverse). This is a special case of when τ < 0,

Where Y = 1/X .



Exponential to get an Inverse Exponential

I Suppose that X has an exponential distribution with parameter
θ∗ and consider Y = 1/X

I Cdf of Y is

FY (y) = Pr(Y ≤ y) = Pr( 1X ≤ y) = Pr(X ≥ 1
y ) = exp

(
− 1

yθ∗

)
.

I Define a new parameter θ = 1
θ∗ . With this notation,

FY (y) = Pr(Y ≤ y) = exp
(

− θ

y

)
.

I This is an inverse exponential distribution with parameter θ



Exponential to get a Weibull

I Start with X ∼ exponential distribution with parameter 1.
Define transformed random variable with positive parameters τ
and θ:

Y = θX 1/τ

I This has distribution

FY (y) = Pr(Y ≤ y)

= Pr(X 1/τ ≤ y
θ

) = Pr(X ≤
(y
θ

)τ
)

= 1 − exp
(

−
(y
θ

)τ)
,

known as a Weibull distribution



Exponentiation/ Natural Log
I Another type of transformation involves exponentiating a

random variable so that Y = eX

I Develop the distribution of the new random variable through
the cdf

FY (y) = Pr(Y ≤ y) = Pr(eX ≤ y) = Pr(X ≤ ln y) = FX (ln y)

and the pdf
fY (y) = 1

y fX (ln y).

I If X ∼ normal, then Y = eX ∼ a lognormal distribution

I Another commonly used transformation involves taking the
natural logarithm a random variable so that Y = ln(X )

I The pdf and cdf of the new variable Y is given by:

FY (y) = FX (ey ) and fY (y) = ey fX (ey ) = xfX (x).



Exponentiation/ Natural Log
I Another type of transformation involves exponentiating a

random variable so that Y = eX

I Develop the distribution of the new random variable through
the cdf

FY (y) = Pr(Y ≤ y) = Pr(eX ≤ y) = Pr(X ≤ ln y) = FX (ln y)

and the pdf
fY (y) = 1

y fX (ln y).

I If X ∼ normal, then Y = eX ∼ a lognormal distribution

I Another commonly used transformation involves taking the
natural logarithm a random variable so that Y = ln(X )

I The pdf and cdf of the new variable Y is given by:

FY (y) = FX (ey ) and fY (y) = ey fX (ey ) = xfX (x).



Log Transformation: R code
#Assign values for alpha and theta for Gamma dist.
alpha<-0.8
theta<-10000

#Find the pdf for the claim severities (x)
x<-seq(5,300000)
fx<-dgamma(x,shape=alpha,scale=theta)

#Find the transformed pdf (Y) and plot
# Y = log(X)
# F_Y(y) = F_X(e^y)
# f_Y(y) = e^y f_X(e^y) = x*f_X(x)
x<-seq(5,300000)
y<-log(x)
fy<-fx*x
plot(y,fy,type="l",lty=1,xlab="log claim severity",

ylab="density",ylim=c(0,0.35))



Review

In this section, you learned how to:

I Provide foundations for creating new distributions: multiplying
by a constant, raising to a power, and exponentiation.

I Understand connections among the distributions
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Methods of Creating New Distributions II



Creating Severity Distributions

I Approach 1 (previous video): We discussed distributions that
are created by transforming the random variable of a
distribution:
I Multiplication by a constant (Y = cX )
I Raising to a power (Y = X τ )
I Exponentiation (Y = eX )

I Approach 2: We consider ways of combining distributions to
form a distribution of interest:
I Mixing
I Splicing



Discrete Mixture Severity Distributions

I Definition. Let X1, . . . ,Xk be random variables and define

Y =


X1 with probability α1
...

...
Xk with probability αk

Here, αj > 0 and α1 + · · ·+ αk = 1. Then, Y is a k-point mixture
random variable

Cdf is
FY (y) = α1FX1(y) + · · ·+ αkFXk (y)

with mean
E (Y ) = α1E (X1) + · · ·+ αkE (Xk).



Example: Actuarial Exam Question

Question
A collection of insurance policies consists of two types. 25% of
policies are Type 1 and 75% of policies are Type 2. For a policy
of Type 1, the loss amount per year follows an exponential
distribution with mean 200, and for a policy of Type 2, the loss
amount per year follows a Pareto distribution with parameters
α = 3 and θ = 200. For a policy chosen at random from the
entire collection of both types of policies, find the probability
that the annual loss will be less than 100, and find the average
loss.



Example: Actuarial Exam Question

Solution:
The two types of losses are the random variables X1 and X2.
X1 has an exponential distribution with mean 200, so

FX1 (100)=1−e− x
θ =1−e− 100

200 =0.393

X2 has a Pareto distribution with parameters α = 3 and
θ = 200, so

FX2 (100)=1−( θ
x+θ )α=1−( 200

100+200 )3=0.704

Hence,
FX (100)=(0.25×0.393)+(0.75×0.704)=0.626.

Further, the average loss is given by:

E(X)=0.25E(X1)+0.75E(X2)=(0.25×200)+(0.75×100)=125.



R Code to Produce a Mixture Distribution
# Create a vector of alphas and thetas for the two
# subpopulations and plot the pdfs
alpha<-c(0.8, 0.5) ; theta<-c(15000, 30000)
plot(log(x),dgamma(x,shape=alpha[1],scale=theta[1])*x,

type="l",xlab="log claim severity",ylab="density",
ylim=c(0,0.35))

lines(log(x), dgamma(x,shape=alpha[i],scale=theta[i])*x)
# Create a vector of weights and create an object
# called pdfmix for the mixture pdf on log scale
weight<-c(0.25,0.75)
x<-seq(5,300000)
pdfmix<-0
for(i in 1:2){

pdfmix<-dgamma(x,shape=alpha[i],
rate=1/theta[i])*x*weight[i]+pdfmix}

#Superimpose a plot of the mixture pdf
lines(log(x), pdfmix,col="red",lwd=2)



Continuous Mixtures for Severity
I Infinite number of subgroups within a population

Each subgroup has F(·|θ) (e.g., exponential) but with a parameter θ
that accounts for population differences

I Assume the random variable Θ has pdf fΘ(θ)

I Cdf:

FX (x) = Pr(X ≤ x) = EΘ[Pr(X ≤ x |Θ)]

=
∫

Pr(X ≤ x |θ)fΘ(θ)dθ

=
∫

FX |Θ(x |θ)fΘ(θ)dθ

I Pdf:
fX (x) =

∫
fX |Θ(x |θ)fΘ(θ)dθ



Special Case: Gamma Mixtures of Exponentials
I Suppose X |Θ ∼ exponential( 1

Θ ):

fX |Θ(x |θ) = θe−θx

I Suppose Θ ∼ gamma(α, β)

fΘ(θ) = 1
Γ(α)βα θ

α−1e−θ/β

I Pdf of X is

fX (x) =
∫

fX |Θ(x |θ)fΘ(θ)dθ

= 1
Γ(α)βα

∫ ∞
0

θαe−θ(x+1/β)dθ = αβ

(1 + xβ)α+1

I This is a Pareto distribution with parameters α and θ = 1/β



Mixture Expectations

I Law of iterated expectation:

E (X ) = EΘ[E(X |Θ)]

I This is easily extended to kth moment:

E (X k) = EΘ[E (X k |Θ)]

Law of total variance:

Var(X ) = EΘ[Var(X |Θ)] + VarΘ[E (X |Θ)]



Splicing

I Join (splice) together different probability density functions to
form a pdf over support of a random variable

fX (x) =


α1f1(x) c0 < x < c1
α2f2(x) c1 < x < c2

...
...

αk fk(x) ck−1 < x < ck

α1 + α2 · · ·+ αk = 1

Each fj is a pdf, so that
∫ cj

cj−1
fj(x)dx = 1

cj ’s are typically known



Review

In this section, you learned how to:

I Provide foundations for creating new distributions: Mixing and
Splicing

I Understand connections among the distributions.
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Coverage Modifications: Deductibles



Risk Retention Framework

I Now consider the following framework:
I Policyholder or insured suffers a loss of amount X
I Under an insurance contract, the insurer is obligated to cover a

portion of X , denoted as Y
I Y represents the insurer’s claim payment

I In this section:
I We introduce standard mechanisms that insurers use to reduce,

or mitigate, their risk, including deductibles, policy limits and
coinsurance.

I We will also introduce reinsurance, a mechanism of insurance
for insurance companies.

I We examine how the distribution of the insurer’s obligations
depends on these mechanisms.

I In this video, we focus on impacts of deductibles.



Ordinary Deductible
I Under Ordinary Deductible (d), we first define the payment

per loss variable Y L, given by:

Y L = (X − d)+ =
{
0 X ≤ d
X − d X > d .

Notation “(·)+” means “Take the positive part of”.

I Insurance only pays amounts in excess of the deductible d . If a
loss is less than the deductible, the insurer does not observe the
loss.
I Random variable Y P is the claim that an insurer observes
I “P” superscript indicates that the retained loss is on a per

payment basis

I Therefore, the payment per payment variable Y P , given by:

Y P =
{
undefined/not observed X ≤ d
X − d X > d



Distribution of Payment Per Loss Variable Y L

I The distribution of Y L is a hybrid combination of discrete and
continuous components:
I The discrete part of the distribution is concentrated at Y = 0

when (X ≤ d)
I the continuous part is spread over the interval Y > 0 when

(X > d)

I Using the transformation Y L = X − d for the continuous part
of the distribution, we can find the pdf of Y L given by:

fY L(y) =
{

FX (d) y = 0
fX (y + d) y > 0.

I The distribution functions of Y L can be found directly using
the pdf of X as follows

FY L(y) =
{

FX (d) y = 0
FX (y + d) y > 0.



Distribution of Payment Per Payment Variable Y P

I We can see that the payment per payment variable is the
payment per loss variable Y P = Y L conditional on the loss
exceeding the deductible (X > d), i.e.,Y P = (X − d)|X > d .

I Hence, the pdf of Y P is given by:

fY P (y) = fX (y + d)
1− FX (d) , for y > 0.

I The distribution functions of Y P can be found directly using
the pdf of X as follows

FY P (y) = FX (y + d)− FX (d)
1− FX (d) , for y > 0



Raw Moments of Y L and Y P

I The raw moments of Y L and Y P can be found directly using
the pdf of X as follows:

E
[(

Y L
)k
]

=
∫ ∞

d
(x − d)k fX (x)dx , and

E
[(

Y P
)k
]

=
∫∞

d (x − d)k fX (x)dx
1− FX (d) =

E
[(

Y L
)k
]

1− FX (d) .

I For k = 1, we can use the survival function to calculate
E
(
Y L
)
as:

E
(
Y L
)

=
∫ ∞

d
[1− FX (x)]dx

I For k = 1, the expectation of Y P is known as the mean excess
loss eX (d). Thus:

E
(
Y P
)

= eX (d) = E (X − d |X > d) = E(Y L)
1−FX (d) =

∫∞
d [1−FX (x)]dx

1−FX (d) .



Example: Actuarial Exam Question
Question: For an insurance, losses have the density function

fX (x) =
{

0.02x 0 < x < 10
0 elsewhere

The insurance has an ordinary deductible of 4 per loss. Y P is
the claim payment per payment random variable. Calculate
E [Y P ]

Solution: We define Y P as follows

Y P =
{
undefined X ≤ 4
X − 4 X > 4

So, E (Y P) =
∫ 10

4 (x−4)0.02xdx
1−FX (4) = 2.88

0.84 = 3.43



Loss Elimination Ratio (LER)

I Consider an ordinary deductible, cost (amount of payment) per
loss event.

I The Loss elimination ratio at deductible d is the fraction of the
losses have been eliminated by introducing the deductible and
given by:

LER = E (X )− E (Y L)
E (X )



Franchise Deductible

I A little less common type of policy deductible is the franchise
deductible.

I The payment per loss and payment per payment variables are
defined as

Y L =
{
0 X ≤ d
X X > d .

and

Y P =
{
Undefined X ≤ d
X X > d .



Review

Random Variable Expectation
Excess loss random variable eX (d) = E(X − d |X > d)
Y P = X − d if X > d mean excess loss function
left truncated and shifted variable mean residual life function

complete expectation of life
ek

X (d) = E
[
(X − d)k |X > d

]
Y L = (X − d)+ =

{
0 X ≤ d
X − d X > d E (X − d)+ = e(d)S(d)

left-censored and shifted variable E (X − d)k
+ = ek(d)S(d)

For nonnegative, continuous random variables,

E
(
Y L) = E(X − d)+ =

∫ ∞

d
S (x) dx
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Coverage Modifications: Limits



Policy Limit

I Under policy limits, the insurer is responsible for covering the
actual loss X up to the limit of its coverage u.

I If the loss exceeds the policy limit, the difference X − u has to
be paid by the policyholder.

I The amount paid by the insurer Y is known as the limited loss
variable, denoted by X ∧ u, and expressed as:

Y = X ∧ u =
{

X X ≤ u
u X > u.

Notation “∧” means “take the minimum of”

I The distinction between Y L and Y P is not needed under
limited policy as the insurer will always make a payment.



Distribution of the Limited Loss Variable
I The distribution of Y is a hybrid combination of discrete and

continuous components:
I The discrete part of the distribution is concentrated at Y = u

when (X > u)
I the continuous part is spread over the interval Y < u when

(X ≤ u)

I The pdf of Y is given by:

fY (y) =
{

fX (y) 0 < y < u
1− FX (u) y = u.

I Accordingly, the distribution function of Y is given by:

FY (y) =
{

FX (x) 0 < y < u
1 y ≥ u.



Raw Moments of Limited Loss Variable

I The raw moments of Y can be found directly using the pdf of
X as follows:

E
(
Y k
)

= E
[
(X ∧ u)k

]
=
∫ u

0 xk fX (x)dx +
∫∞

u uk fX (x)dx
=
∫ u

0 xk fX (x)dx + uk [1− FX (u)] .

I An alternative expression using the survival function is:

E
(
Y k
)

= E
[
(X ∧ u)k

]
=
∫ u

0
kxk−1 [1− FX (x)] dx .

I For k = 1, this is

E (Y ) = E (X ∧ u) =
∫ u

0
[1− FX (x)] dx .



Limited Expected Value: Pareto Policy Limit
I Expected value of limited loss variable (X ∧ u) is

E (Y ) = E (X ∧ u) =
∫ u

0
(1− F (x)) dx =

∫ u

0
S(x)dx .

Pareto Policy Limit. Recall

1− F (x) = S(x) = Pr(X > x) =
(

θ

x + θ

)α

with mean E (X ) = θ
α−1 . Thus, the limited expected value is

E (X ∧ u) = θα
∫ u

0
(x + θ)−αdx = θα (x + θ)−α+1

−α+ 1

∣∣∣∣∣
u

0

= θα

(
θ−α+1 − (u + θ)−α+1

α− 1

)

= θ

α− 1

{
1−

(
θ

u + θ

)α−1}
.



Expected Payments Under Deductible Revisited
I Using the definitions of (X − d)+ and X ∧ d , we see that:

X = (X − d)+ + X ∧ d then

E (X ) = E (X − d)+ + E (X ∧ d)

Pareto distribution Example. Recall

E (X ) = θ

α− 1 and E (X∧d) = θ

α− 1

{
1−

(
θ

d + θ

)α−1}
.

Thus,

E (X − d)+ = E (X )− E (X ∧ d)

= θ

α− 1 −
θ

α− 1

{
1−

(
θ

d + θ

)α−1}

= θ

α− 1

{(
θ

d + θ

)α−1}



Loss Elimination Ratio (LER) Revisited

I Recall:

X = (X − d)+ + X ∧ d and

,
LER = E (X )− E (X − d)+

E (X )

I Then the Loss elimination ratio at deductible d can be
expressed as

LER = E (X ∧ d)
E (X )

= limited exp value
exp value



Example: Actuarial Exam Question
Question: Under a group insurance policy, an insurer agrees
to pay 100% of the medical bills incurred during the year by
employees of a small company, up to a maximum total of one
million dollars. The total amount of bills incurred,X , has pdf

fX (x) =
{

x(4−x)
9 0<x<3

0 elsewhere

where x is in millions. Calculate the total amount, in millions of
dollars, the insurer would expect to pay under this policy.

Solution: Define the total amount paid by the insurer as

Y =X∧1=

{
X X≤1

1 X>1.

So, E(Y )=E(X∧1)=
∫ 1

0
x2(4−x)

9 dx+1·
∫ 3

1
x(4−x)

9 dx=0.935.



R Code to Calculate Limited Expected Value
set.seed(12345)
mu <- 12; sigma <- 1.5
claims <- rlnorm(n = 100000, meanlog = mu, sdlog = sigma)
## Functions to calculate unlimited and limited expected
## values
mlnorm <- function(meanlog, sdlog) exp(meanlog+sdlog^2/2)
levlnorm <- function(limit, meanlog, sdlog){

t1 <- mlnorm(meanlog = meanlog, sdlog = sdlog) *
pnorm(q = (log(limit)-meanlog-sdlog^2)/sdlog)

t2 <- limit*(1- pnorm((log(limit)- meanlog)/sdlog))
t1 + t2

}
## Unlimited
mean(claims)
mlnorm(meanlog = mu, sdlog = sigma)
## Claim amounts retained under a $1 million deductible
mean(pmin(1e6, claims))
levlnorm(limit = 1e6, meanlog = mu, sdlog = sigma)



Review

Random Variable Expectation
limited loss variable

min(X , u) = X ∧ u =
{

X X ≤ u
u X > u E (X ∧ u)− limited expected value

right censored

Note that (X − u)+ + (X ∧ u) = X . Thus, E (X − u)+ + E (X ∧ u) = E(X)

For nonnegative, continuous random variables,

E (X ∧ u) =
∫ u

0
S (x) dx
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3.5 Maximum Likelihood Estimation



Overview

In this section, you learn how to:

▶ Define a likelihood for a sample of observations from a
continuous distribution

▶ Define the maximum likelihood estimator for a random sample
of observations from a continuous distribution

▶ Estimate parametric distributions based on grouped, censored,
and truncated data



Maximum Likelihood Estimators for Complete Data
▶ A random sample X1, . . . , Xn from a distribution with

distribution function FX . xi is the observation.
▶ θ denotes the set of parameters for FX .
▶ With the independence assumption of complete (individual)

and continuous data, we define the likelihood to be

L(θ) =
n∏

i=1
f (xi).

▶ Each individual observation is recorded, and its contribution
to the likelihood function is the density at that value.

▶ The maximum likelihood estimator is that value of the
parameters in θ that maximize L(θ).

▶ The logarithmic likelihood is denoted as

l(θ) = log L(θ) =
n∑

i=1
log f (xi).



Maximum Likelihood Estimators using Modified Data

▶ Maximum Likelihood Estimators for Grouped Data
▶ Maximum Likelihood Estimators for Censored Data
▶ Maximum Likelihood Estimators for Truncated Data



Maximum Likelihood Estimators for Grouped Data

▶ The observations are only available in grouped form, and the
contribution of each observation to the likelihood function is
the probability of falling in a specific group (interval).

▶ Let nj represent the number of observations in the interval
( cj−1, cj ] . The grouped data likelihood function is thus
given by

L (θ) =
k∏

j=1
[FX ( cj | θ) − FX ( cj−1| θ)]nj ,

where c0 is the smallest possible observation (often set to
zero) and ck is the largest possible observation (often set to
infinity).



Maximum Likelihood Estimators for Censored Data

▶ Only partial information is available; all that may be known is
that the observation exceeds a specific value.

▶ The contribution of the censored observation to the likelihood
function is the probability of the random variable exceeding
this specific limit.

▶ The likelihood function for censored data is then given by

L(θ) =
[ r∏

i=1
fX (xi)

]
[SX (u)]m ,

where r is the number of known loss amounts below the limit
u and m is the number of loss amounts larger than the limit u.



Maximum Likelihood Estimators for Truncated Data

▶ If the values of X are truncated at d , then it should be noted
that we would not have been aware of the existence of these
values had they not exceeded d .

▶ The contribution to the likelihood function of an observation
x truncated at d will be a conditional probability and the
fX (x) will be replaced by fX (x)

SX (d) .
▶ The likelihood function for truncated data is then given by

L(θ) =
k∏

i=1

fX (xi)
SX (d) ,

where k is the number of loss amounts larger than the
deductible d .



Exercise 3.5.1

▶ Data: Extract claim severity data from the Wisconsin
Property Fund data.

▶ Aim: (1) Write a function to calculate the negative
log-likelihood for the claim severity data, assuming that claim
severity is Pareto distributed. (2) Find the maximum
likelihood estimates and plot a contour plot of the likelihood.

▶ R functions: dpareto, optim, contour, and points.



Exercise 3.5.2

▶ Data: same as Exercise 3.5.2
▶ Aim: calculate 95% confidence intervals for the parameter

estimates that we found in exercise 3.5.1.
▶ Instructions: use the Hessian matrix (which is a matrix of the

second-order partial derivatives) to find the variance of the
estimators. Specifically, the standard errors of the estimators
are equal to the square root of the diagonal elements of the
inverse of the Hessian matrix.

▶ R functions: solve, diag, and qnorm.



Review

In this section, you learnt how to:

▶ Define a likelihood for a sample of observations from a
continuous distribution

▶ Define the maximum likelihood estimator for a random sample
of observations from a continuous distribution

▶ Estimate parametric distributions based on grouped, censored,
and truncated data
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Coverage Modifications: Coinsurance and
Reinsurance



Coinsurance
I Under the coinsurance, the retained loss by the insurer is a

percentage α.

I The percentage α is often referred to as the coinsurance factor.

I Define Y = αX . Typically, 0 < α < 1 and X denote the loss
incurred.

I Combining three special cases of coverage modifications
(deductible, limit, coinsurance) results in the payment per loss
variable Y L defined as:

Y L =


0 X ≤ d ,
α(X − d) d < X ≤ u,
α(u − d) X > u.

I Think about these as parameters in a contract between a
policyholder and an insurer and so represent modifications of
the underlying contract.



Raw Moments of Y L

I Using Y L = α [(X ∧ u)− (X ∧ d)]

E
(
Y L
)

= α [E (X ∧ u)− E (X ∧ d)]
= α

∫ u
0 [1− FX (x)] dx − α

∫ d
0 [1− FX (x)] dx .

I The k-th raw moment of Y L is given by:

E
[(

Y L
)k
]

=
∫ u

d
[α(x − d)]k fX (x)dx + [α(u − d)]k [1− FX (u)]



Inflation
I To handle inflation, a growth factor (1 + r) may be applied to

X resulting in an inflated random variable (1 + r)X .

I The resulting per loss variable can be written as

Y L =


0 X ≤ d

1+r ,

α[(1 + r)X − d ] d
1+r < X ≤ u

1+r ,

α(u − d) X > u
1+r .

I The first and second moments of Y L can be expressed as:

E(Y L)=α(1+r)[E(X∧ u
1+r )−E(X∧ d

1+r )]

and

E
[
(Y L)2

]
= α2(1 + r)2

{
E
[(

X ∧ u
1+r

)2
]
− E

[(
X ∧ d

1+r

)2
]

−2
(

d
1+r

) [
E
(
X ∧ u

1+r

)
− E

(
X ∧ d

1+r

)]}



Example: Actuarial Exam Question
Question: The ground up loss random variable for a health
insurance policy in 2006 is modeled with X , a random vari-
able with an exponential distribution having mean 1000. An
insurance policy pays the loss above an ordinary deductible of
100, with a maximum annual payment of 500. The ground up
loss random variable is expected to be 5% larger in 2007, but
the insurance in 2007 has the same deductible and maximum
payment as in 2006. Find the percentage increase in the
expected cost per payment from 2006 to 2007.

Solution: We define the amount per loss Y L in both years
as

Y L
2006=


0 X≤100,

X−100 100<X≤600,

500 X>600.



Example: Actuarial Exam Question

Solution Cont’d:

Y L
2007=


0 X≤95.24,

1.05X−100 95.24<X≤571.43,

500 X>571.43,.

E(Y P
2006)= E(Y L

2006)
SX (d) = E(X∧600)−E(X∧100)

SX (100)

=
1000

(
1−e−

600
1000
)
−1000

(
1−e−

100
1000
)

e−
100
1000

=393.469

E(Y P
2007)= E(Y L

2007)
SX (d) = 1.05[E(X∧571.43)−E(X∧95.24)]

SX (95.24)

=
1.05

[
1000

(
1−e−

571.43
1000

)
−1000

(
1−e−

95.24
1000
)]

e−
95.24
1000

=397.797

Then, E(Y P
2007)

E(Y P
2006) − 1 = 397.797

393.469 − 1 = 0.011 = 1.1%



R Code to Calculate Expected Value of the Claims Under
Deductible and Policy Limit

set.seed(12345)
mu <- 12; sigma <- 1.5
claims <- rlnorm(n = 100000, meanlog = mu, sdlog = sigma)

# Number of claims resulting in reimbursement
sum(claims > 1e6) # in the data
(1 - plnorm(q = 1e6, meanlog = mu, sdlog = sigma))
* length(claims) # lorgnormal model

# Average Value from claims in the data
insured <- claims[claims > 1e6]; mean(pmin(5e6, insured))

# Expected value of the claims based on lognormal model
1e6 + (levlnorm(limit = 5e6, meanlog = mu, sdlog = sigma) -

levlnorm(limit = 1e6, meanlog = mu, sdlog = sigma)) /
(1 - plnorm(q = 1e6, meanlog = mu, sdlog = sigma))



Reinsurance
I Reinsurance is a contractual arrangement under which an

insurer transfers part of the underlying insured risk by securing
coverage from another insurer (referred to as a reinsurer) in
return for a reinsurance premium.

I The common form of reinsurance contracts is excess of loss
coverage:
I the primary insurer must make all required payments to the

insured until the primary insurer’s total payments reach a fixed
reinsurance deducible.

I the reinsurer is then only responsible for paying losses above the
reinsurance deductible

I Benefits of reinsurance:
I risk management tool for insurers
I allows the primary insurer to benefit from underwriting skills,

expertise and proficient complex claim file handling of the larger
reinsurance companies.



Review

In this video, you learned how to:

I We evaluate the impacts of coinsurance and inflation on
insurer’s costs.

I We examine how the distribution of the insurer’s obligations
depends on these mechanisms.

I We will also introduce reinsurance, a mechanism of insurance
for insurance companies.
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