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Frequency and Severity Models
Edward W. Frees (University of Wisconsin - Madison)

Chapter Preview. Many insurance data sets feature information about how often

claims arise, the frequency, in addition to the claim size, the severity. This chap-

ter introduces tools for handling the joint distribution of frequency and severity.

Frequency-severity modeling is important in insurance applications because of fea-

tures of contracts, policyholder behavior, databases that insurers maintain, and

regulatory requirements. Model selection depends on the data form. For some data,

we observe the claim amount and think about a zero claim as meaning no claim

during that period. For other data, we observe individual claim amounts. Model

selection also depends upon the purpose of the inference; this chapter highlights

the Tweedie generalized linear model as a desirable option. To emphasize practical

applications, this chapter features a case study of Massachusetts automobile claims,

using out-of-sample validation for model comparisons.

6.1 How Frequency Augments Severity Information

At a fundamental level, insurance companies accept premiums in exchange for

promises to indemnify a policyholder upon the uncertain occurrence of an insured

event. This indemnification is known as a claim. A positive amount, also known

as the severity, of the claim, is a key financial expenditure for an insurer. One can

also think about a zero claim as equivalent to the insured event not occurring. So,

knowing only the claim amount summarizes the reimbursement to the policyholder.

Ignoring expenses, an insurer that examines only amounts paid would be indifferent

to two claims of 100 when compared to one claim of 200, even though the number

of claims differ.

Nonetheless, it is common for insurers to study how often claims arise, known as

the frequency of claims. Let us think about reasons why an insurance analyst should

be concerned with models of frequency as well as severity.

Contractual. It is common for insurance contracts to impose deductibles and

policy limits on a per occurrence basis. For example, if the policy has a deductible

of 100 per occurrence, then two losses of 100 would result in a payout (or claim) of

zero from the insurer whereas a single loss of 200 would result in a payout of 100.

Models of total insured losses need to account for deductibles and policy limits for

each insured event.

Behaviorial. Models of insurance losses implicitly or explicitly account for deci-
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6.1 How Frequency Augments Severity Information 133

sions and behavior of people and firms that can affect losses; these decision-makers

can include not only the policyholder but also the insurance adjuster, repair special-

ist, medical provider, and so forth. Behaviorial explanatory (rating) variables can

have different effects on models of how often an event occurs in contrast to the size

of the event.

For example, in homeowners insurance, consider a very careful policyholder who

lives in an expensive neighborhood. We might look to characteristics of the home-

owner as an indication of introduction of loss prevention measures, e.g., sprinklers,

as determinants that suggest low frequency. In contrast, we might look to the overall

income level of the geographic area where the house is located as a proxy for the

level of repair costs in the event of an accident, suggesting high severity.

In healthcare, the decision to utilize healthcare by individuals is related primar-

ily to personal characteristics whereas the cost per user may be more related to

characteristics of the healthcare provider (such as the physician).

In automobile insurance, we might think of population density as positively cor-

related with the frequency of accidents and negatively associated with severity. For

example, in a densely populated urban area, the traffic congestion is high, meaning

that drivers are likely to have frequent, but relatively low-cost, accidents. This is in

contrast to a more sparsely populated rural area where there is an opportunity to

drive speedily. Less congestion may mean less frequent accidents but greater speeds

mean greater severity.

Prior claims history is also used as a variable that provides information about

a policyholder’s risk appetite. Especially in personal lines, it is common to use an

indicator of whether or not a claim has occurred in, for example, the last three years,

rather than the claim amount. (Claim amounts are commonly used in commercial

lines through credibility calculations). In many countries, automobile premiums are

adjusted by a so-called “bonus-malus” system where prior claim frequency is used

to dynamically adjust premiums.

Databases. Many insurers keep separate data files that suggest developing sepa-

rate frequency and severity models. For example, insurers maintain a “policyholder”

file that is established when a policy is written. This file records much underwriting

information about the insured(s), such as age, gender and prior claims experience,

policy information such as coverage, deductibles and limitations, as well as the in-

surance claims event. A separate file, often known as the “claims” file, records

details of the claim against the insurer, including the amount. (There may also be a

“payments” file that records the timing of the payments although we shall not deal

with that here.) This recording process makes it natural for insurers to model the

frequency and severity as separate processes.

Regulatory and Administrative. Insurance is a closely monitored industry

sector. Regulators routinely require the reporting of claims numbers as well as

amounts. This may be due to the fact that there can be alternative definitions of an

“amount,” e.g., paid versus incurred, and there is less potential error when reporting

claim numbers.

At a broad level, it is clear that insurers need very different administrative systems

for handling small, frequently occurring, reimbursable losses, e.g., prescription drugs,

versus rare occurrence, high impact events, e.g., inland marine. Every insurance
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claim means that the insurer incurs additional expenses suggesting the that claims

frequency is an important determinant of expenses.

There are considerable differences of opinion concerning the importance of fre-

quency models for allocated loss adjustment expenses (ALAE), costs that can be

associated with a specific claim, e.g., legal defense fees and claims adjuster costs.

According to Werner and Modlin (2010), it is common to assume that ALAE to vary

by the amount of the claim rather than frequency.

6.2 Sampling and the Generalized Linear Model

6.2.1 Sampling

For a sampling basis, begin by thinking about the policyholder and claims databases

that an insurer maintains. An insurer enters new contracts with insureds and ad-

ministers claims continuously over time. For some purposes, it is helpful to consider

a continuous-time stochastic process as a sampling model; this is the perspective

of the loss reserving Chapter 18 and the survival modeling Chapter 19 (where we

examine processes that influence policy retention). In contrast, this chapter focuses

on collections of policies without an emphasis on the exact calendar start date of

the policy. In particular, we leave issues of claim development to those chapters and

only consider closed claims. Ratemaking and reinsurance are the primary purposes

of this chapter rather than reserving and policy retention.

To establish notation, for each policy {i}, the potentially observable responses

are:

• Ni − the number of claims (events),

• yij , j = 1, ..., Ni − the amount of each claim (loss), and

• Si = yi1 + · · ·+ yiNi , the aggregate claim amount.

By convention, the set {yij} is empty when Ni = 0.

For a specific accounting period (such as a year), the sample of observable re-

sponses may consist of:

(i) Si, so that only aggregate losses are available. For example, when examining losses

for commercial insurance, it is common that only aggregate losses are available.

(ii) (Ni, Si), so that the number and amount of aggregate losses are available.

(iii) (Ni, yi1, ..., yi,Ni), so that detailed information about each claim is available. For

example, when examining personal automobile claims, losses for each claim are

available. Let yi = (yi1, ..., yi,Ni)
′ be the vector of individual losses.

We can use ideas from conditional probability to decompose the distribution into

frequency and severity components. To be specific, consider the third data form.

Suppressing the {i} subscript, we decompose the distribution of the dependent vari-

ables as:

f (N,y) = f (N) × f (y|N)

joint = frequency × conditional severity,

where f (N,y) denotes the joint distribution of (N,y). This joint distribution equals

the product of the two components:

• claims frequency: f (N) denotes the probability of having N claims; and
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• conditional severity: f (y|N) denotes the conditional density of the claim vector

y given N .

The second data form follows similarly, replacing the vector of individual losses y

with the aggregate loss S. We can even decompose the first data form by breaking

off the zero event through the indicator notation ri = I(Si > 0) for the frequency

component and conditioning on ri = 1 for the severity component. We will examine

this data form using “two-part models” in Section 6.3.1.

Through this decomposition, we do not require independence of the frequency and

severity components as is traditional in the actuarial science literature. There are

many ways to model dependence when considering the joint distribution f (N,y).

For example, one may use a latent variable that affects both frequency N and loss

amounts y, thus inducing a positive association. Copulas are another tool used

regularly by actuaries to model non-linear associations. The conditional probability

framework is a natural method of allowing for potential dependencies and provides

a good starting platform for empirical work.

6.2.2 Generalized Linear Model

A natural starting platform for empirical modeling of both frequency and severity

components is the generalized linear model (GLM) introduced in Chapter 5. Indeed,

one reason for the popularity of this modeling framework is that it has the flexibility

to address both frequency and severity models.

Thinking of a generic dependent variable yi (without regard to whether it repre-

sents frequency or severity), we focus on logarithmic links so that the mean function

is E yi = exp(x′iβ).

In some instances, the mean is known to vary proportionally with a variable

that we label as Ei, for “exposure;” see the next subsection for more discussion of

exposures. To incorporate exposures, one can always specify one of the explanatory

variables to be lnEi and restrict the corresponding regression coefficient to be 1;

this term is known as an offset. With this convention, the link function is

lnµi = lnEi + x′iβ.

Example 6.1 (Relativities). In this example, we consider a small fictitious data

set that appears in Werner and Modlin (2010). The data consists of loss and loss

adjustment expenses (LossLAE), decomposed by three levels of an amount of insur-

ance (AOI) and three territories (Terr). For each combination of AOI and Terr, we

have available the number of policies issued, given as the exposure.
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AOI Terr Exposure LossLAE

Low 1 7 210.93

Medium 1 108 4458.05

High 1 179 10565.98

Low 2 130 6206.12

Medium 2 126 8239.95

High 2 129 12063.68

Low 3 143 8441.25

Medium 3 126 10188.70

High 3 40 4625.34

Source: Werner and Modlin, 2010

Our objective is to fit a generalized linear model (GLM) to the data using LossLAE

as the dependent variable. We would like to understand the influence of the amount

of insurance and territory on LossLAE.

We now specify two factors and estimate a generalized linear model using a gamma

distribution with a logarithmic link function. In the R output that follows, the

“relevel” command allow us to specify the reference level. For this example, a

medium amount of insurance (AOI = medium) and the second territory (Terr = 2)

are chosen as the reference levels. Logarithmic exposure is used as an offset variable

so that cells (combinations of the two categorical variables) with larger number of

exposures/policies will have larger expected losses.

Selected R Output

> Sampdata$AOI = relevel(Sampdata$AOI, ref = "Medium")

> Sampdata$Terr = factor(Sampdata$Terr)

> Sampdata$Terr = relevel(Sampdata$Terr, ref = "2")

> summary(glm(LossLAE ~ AOI + Terr, offset = log(Exposure), data = Sampdata,

+ family = Gamma(link = "log")))

Call:

glm(formula = LossLAE ~ AOI + Terr, family = Gamma(link = "log"),

data = Sampdata, offset = log(Exposure))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.180e+00 1.975e-06 2116446 <2e-16 ***

AOIHigh 3.577e-01 2.164e-06 165302 <2e-16 ***

AOILow -3.147e-01 2.164e-06 -145448 <2e-16 ***

Terr1 -4.601e-01 2.164e-06 -212656 <2e-16 ***

Terr3 2.123e-01 2.164e-06 98109 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for Gamma family taken to be 7.022767e-12)

Null deviance: 1.3528e+00 on 8 degrees of freedom

Residual deviance: 2.8091e-11 on 4 degrees of freedom

AIC: -47.141
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Parameter estimates can be readily converted to relativities by exponentiation, as

follows:

Variable Parameter Relativity (exponential

Estimate parameter estimate)

Intercept 4.18 65.366

AOILow -0.3147 0.730

AOIMedium 0 1

AoIHigh 0.3577 1.430

Terr1 -0.4601 0.631

Terr2 0 1

Terr3 0.2123 1.237

With the relativities and exposures, it straightforward to compute predictions.

For example, for a high amount of insurance in territory 1, the exposure is 179, so

the fitted value is 179× 65.366× 1.430× 0.631 = 10, 558. This is close to the actual

value 10,565.98.

By comparing all actual to fitted values, or the null to the residual deviance, or

examining the t-values or p-values, we see that we have done a pretty amazing job

of fitting this data. In fact, these data are artificially constructed by Werner and

Modlin to prove that various univariate methods of identifying relativities can do

poorly. A multivariate method such as GLM is usually preferred in practice. Recall

that the purpose of linear, as well as generalized linear, modeling is to simultaneously

fit several factors to a set of data, not each in isolation of the others. As will be

discussed in the following subsection, we should pay attention to the variability when

introducing exposures. However, weighting for changing variability is not needed for

this artificial example.

6.2.3 Exposures

As illustrated in the prior example, actuaries commonly use the idea of an “exposure”

to calibrate the size of a potential loss. This subsection discusses exposure from a

statistical perspective. To begin, an exposure is a variable that can be used to

explain the distribution of losses; that is, it is a rating variable. It is typically the

most important rating variable, so important that both premiums and losses are

quoted on a “per exposure” basis. Here are some examples:

Typical Exposure Bases for Several Lines of Business

Line of Business Exposure Basis

Personal Automobile Earned Car Year

Homeowners Earned House Year

Workers Compensation Payroll

Commercial General Liability Sales Revenue, Payroll, Square Footage, Number of Units

Commercial Business Property Amount of Insurance Coverage

Physician’s Professional Liability Number of Physician Years

Professional Liability Number of Professionals (e.g., Lawyers or Accountants)

Personal Articles Floater Value of Item

Source: Werner and Modlin, 2010
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Naturally, selection of a good exposure base goes beyond statistics. An exposure

basis should:

• be an accurate measure of the quantitative exposure to loss,

• be easy for the insurer to determine (at the time the policy is calculated) and not

subject to manipulation by the insured,

• be easy to understand by the insured and to calculate by the insurer,

• consider any preexisting exposure base established within the industry, and

• for some lines of business, be proportional to inflation. In this way, rates are not

sensitive to the changing value of money over time as these changes are captured

in exposure base.

To illustrate, consider personal automobile coverage. Instead of the exposure

basis “earned car year,” a more accurate measure of the quantitative exposure to

loss might be number of miles driven. However, this measure is difficult to determine

at the time the policy is issued and subject to potential manipulation by the insured.

For frequency and severity modeling, it is customary to think about the frequency

aspect as proportional to exposure and the severity aspect in terms of loss per claim

(not dependent upon exposure). However, this does not cover the entire story. For

many lines of business, it is convenient for exposures to be proportional to inflation.

Inflation is typically viewed as unrelated to frequency but proportional to severity.

Small Exposures

We begin by considering instances where the units of exposure may be fractions. To

illustrate, for our automobile data, Ei will represent the fraction of the year that

a policyholder had insurance coverage. The logic behind this is that the expected

number of accidents is directly proportional to the length of coverage. This can also

be motivated by a probabilistic framework based on collections of Poisson distributed

random variables known as Poisson processes, see, for example, Klugman et al.

(2008).

For binary outcomes, this situation is less clear. One way to handle exposures

is to let the logit link function depend on exposures. To this end, the basic logit

link function is π(z) = ez

1+ez . Define an exposure weighted logit link function to be

πi(z) = Ei
ez

1+ez . With this definition, the probability of a claim is

Pr(ri = 1) = πi = πi(x
′
iβ) = Ei

exp(x′iβ)

1 + exp(x′iβ)
. (6.1)

For more discussion, see de Jong and Heller (2008, page 102. In particular, page 162

gives illustrative SAS code) de Jong and Heller (2008).

Variations. There are alternative ways of incorporating partial year exposures,

none clearly superior to the others. Equation (6.1) is based on a uniform distribution

of failures within a year. Some others include:

• A constant hazard rate within the year assumption, resulting in: πi,H(z) = 1 −
(1− ez

1+ez )Ei .

• A hyperbolic assumption (known as the “Balducci” assumption for an Italian

actuary), resulting in: πi,B(z) =
Ei

ez

1+ez

1−(1−Ei) ez

1+ez
.
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See Bowers et al. (1997) for a discussion of these variations.

For some applications, the event of a claim is a relatively infrequent event and

the analyst would like to use all the information available in a claims database. One

may wish to “over-sample” policyholders with claims; the idea is to draw a larger

proportion of a subset of the population that is of interest in the study. Appendix

Section 6.6.2 provides details of this type of sampling scheme.

6.2.4 Grouped versus Individual Data

A discussion of large exposures leads naturally into a discussion of grouped versus

individual data.

Using Offsets to Handle Large Exposures

To begin, recall that sums of independent Poisson random variables also have a Pois-

son distribution. So, when summing random variables from independent policies, it

is sensible to think of exposures as large positive numbers. Thus, it is common to

model the number of accidents per thousand vehicles or the number of homicides

per million population.

For a Poisson distribution, we can use the (logarithmic) number of policies in a

group as an offset variable. Mathematically, if we are thinking about Ei independent

Poisson variables in group i, each with mean µi, then the sum will also be Poisson

distributed with mean Eiµi. For the Poisson distribution, the variance equals the

mean, so both the mean and the variance grow proportionally to the exposure Ei.

When using a Poisson distribution with a logarithmic link function, one only needs

to specify an offset variable lnEi to automatically account for the growing variability.

However, for other distributions, this need not be the case. In the GLM linear

exponential family, we saw that the variance can be expressed as a function of the

mean, v(µ). To be specific, consider the gamma distribution where v(µ) = µ2/φ

and φ is a dispersion parameter. If we are thinking about Ei independent gamma

random variables in group i, each with mean µ and variance θ, then the sum will

also be gamma distributed with mean Eiµ and variance Eiθ. When using a gamma

distribution with a logarithmic link function and offset variable lnEi, the mean will

grow proportionally to the exposure Ei but the variability will grow proportionally

to E2
i , not Ei. So, an offset by itself can not handle large exposures.

Using Variable Scale Parameters to Handle Exposures

For a general distribution in the linear exponential family, suppose that we have

m independent variables from the same distribution with location parameter θ and

scale parameter φ. Then, basic arguments given in Section 6.6.1 show that the

sample average comes from the same distributional family with location parameter

θ and scale parameter φ/m. To apply this result, let us consider a problem that

analysts regularly face, the use of grouped versus individual data.

To be specific, think about a sample i = 1, . . . , n categories, or groups. For

example, each group could be formed by the intersection of amount of insurance,

territory, and so forth. For the ith group, we have Ei independent observations with

the same distribution from the linear exponential family. This has, for example,

location parameter θi, mean µi, and scale parameter φ (that may or may not depend
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on i). One could run an analysis with a data set based on individual observations

j = 1, . . . , Ei, i = 1, . . . , n.

However, with these assumptions, then the average outcome from the ith group

comes from the same exponential family with the same mean µi (or location param-

eter θi) but with a scale parameter φ/Ei. An alternative method of analysis would

be to use the smaller grouped data sample consisting of only n observations, using

the reciprocal of exposure as the weight. The Section 6.6.1 result guarantees:

• Estimates of location/mean parameters (e.g., the regression coefficients) will be

the same. For ratemaking purposes, analysts typically focus on location parameter

estimates.

• Only in the case when the scale parameter is known (e.g., binomial, Poisson) would

other inferential aspects (standard errors, t-statistics, p-values, and so forth) be

the same. Individual data analysis provides more accurate estimates of scale

parameters than the corresponding grouped data analysis.

The book website provides a demonstration of this comparison using the statistical

package R.

Large Exposures for Frequency and Severity Models

As noted earlier, for frequency and severity modeling, it is customary to think about

the frequency aspect as proportional to exposure and the severity aspect in terms

of loss per claim. Let us make this advice a bit more specific in the context of an

individual versus grouped analyses.

Suppose that individual data consists of a sample i = 1, . . . , n groups, with j =

1, . . . , Ei independent observations within each group i. For observation {ij}, the

dependent variables consist of (Nij , Sij), the frequency and total amount of claims.

If explanatory/rating variables are available at the individual observation level,

then aggregating information up to the group level is problematic because one loses

the information in individual level variables.

Instead, assume that explanatory/rating variables are available only at the group

level and we wish to model aggregate frequency and severity variables {Ni =
∑n

j=1Nij ,

Si =
∑n

j=1 Sij}.

• For claims frequency, one alternative is to use a Poisson model with the response

Ni and offset lnEi.

• For claims frequency, another alternative is to use a count member from the

exponential distribution family, e.g., binomial, with the response Ni/Ei and scale

parameter φ/Ei.

• For claims severity, use a severity member from the exponential distribution family,

e.g., gamma, with the response Si/Ni and scale parameter φ/Ni.

As noted earlier, these modeling strategies provide reliable estimates of location

(mean) parameters but not scale parameters. This is a comparative advantage of

analysis with individual level analysis; other advantages include:

• Group level analysis was important before modern day computing and databases

became available. However, in modern times, rarely do the computing require-

ments for an individual level analysis present a substantial barrier.
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• Group level analysis precludes the examination of individual observations. Often,

a highly unusual observation (“outlier”) can provide important information to the

analyst.

• The equivalence between the two procedures relies on a number of unverifiable

assumptions, including the independence of observations within a group. In some

instances, we can think of reasons for positive associations among observations

from the same category. In this case, the variance of the sum grows faster than

linearly and so specifying the scale parameter as inversely proportional to the

exposure may give too large a weight to categories with large exposure.

6.3 Frequency-Severity Models

6.3.1 Two-Part Models

In Section 6.2.1, we introduced three forms of dependent variables. We now focus on

the first type where the only dependent variable of interest is the total claims from

a policy. However, let us think about data sets where we have a large proportion of

zeros, corresponding to no claims. For example, in homeowners, it is not uncommon

to consider data where 93% of policies do not have a claim.

To address this large proportion of zeros, we consider a two-part model that is a

special type of frequency-severity model. In a two-part model, one part indicates

whether an event (claim) occurs and the second part indicates the size of the event.

Specifically, let ri be a binary variable indicating whether or not the ith subject has

an insurance claim and yi describe the amount of the claim.

To estimate a two-part model, the analyst first considers the frequency and then

the severity, conditional on the frequency.

(i) Use a binary regression model with ri as the dependent variable and x1i as the set

of explanatory variables. Denote the corresponding set of regression coefficients

as β1. The logit is a typical binary regression model.

(ii) Conditional on ri = 1, specify a regression model with yi as the dependent variable

and x2i as the set of explanatory variables. Denote the corresponding set of

regression coefficients as β2. The gamma with a logarithmic link is a typical

severity model.

There is usually overlap in the sets of explanatory variables, where variables are

members of both x1 and x2. Typically, one assumes that β1 and β2 are not related

so that the joint likelihood of the data can be separated into two components and

run separately.

Tobit Models

Another way of modeling a large proportion of zeros is to assume that the depen-

dent variable is (left) censored at zero. Chapter 19 on survival models provides

a more complete introduction to censored regression. This section emphasizes the

application to two-part data.

With censored regression models, we use an unobserved, or latent, variable y∗ that

is assumed to follow a linear regression model of the form

y∗i = x′iβ + εi. (6.2)
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The responses are censored or “limited” in the sense that we observe yi = max (y∗i , 0).

Estimation of this model is typically done by assuming normally distributed distur-

bances εi and using maximum likelihood estimation.

It is straightforward to extend this model to allow for limiting values that vary

by policy. In actuarial applications, we think about di as representing a (known)

deductible that varies by policyholder.

One drawback of the tobit model is its reliance on the normality assumption

of the latent response. A second, and more important, drawback is that a single

latent variable dictates both the magnitude of the response as well as the censoring.

There are many instances where the limiting amount represents a choice or activity

that is separate from the magnitude. For example, in a population of smokers,

zero cigarettes consumed during a week may simply represent a lower bound (or

limit) and may be influenced by available time and money. However, in a general

population, zero cigarettes consumed during a week can indicate that a person is

a non-smoker, a choice that could be influenced by other lifestyle decisions (where

time and money may or may not be relevant).

6.3.2 Other Frequency-Severity Models

We now focus on the second and third types of dependent variables introduced in

Section 6.2.1.

For the second form, we have aggregate counts and severities (Ni, Si) (or use the

notation yi instead of Si). Then, the two-step frequency-severity model procedure

is:

• 1. Use a count regression model with Ni as the dependent variable and x1i as the

set of explanatory variables. Denote the corresponding set of regression coefficients

as β1. Typical models include the Poisson and negative binomial models.

• 2. Conditional on Ni > 0, use a GLM with Si/Ni as the dependent variable and

x2i as the set of explanatory variables. Denote the corresponding set of regression

coefficients as β2. Typical models include the gamma regression with a logarithmic

link and a dispersion parameter proportional to 1/Ni.

For the third form of dependent variables, we have individual claims yi = (yi1, ..., yi,Ni)
′

available. In this case, the first step for the count model is the same. The second

step for severity modeling becomes:

• 2*. Conditional on Ni > 0, use a regression model with yij as the dependent

variable and x2i as the set of explanatory variables. Denote the corresponding

set of regression coefficients as β2. Typical models include the linear regression

(with logarithmic claims as the dependent variable), gamma regression and mixed

linear models. For the mixed linear models, one uses a subject-specific intercept

to account for the heterogeneity among policyholders.

6.3.3 Tweedie GLMs

The natural exponential family includes continuous distributions, such as the nor-

mal and gamma, as well as discrete distributions, such as the binomial and Poisson.
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It also includes distributions that are mixtures of discrete and continuous compo-

nents. In insurance claims modeling, a widely used mixture is the Tweedie (1984)

distribution. It has a positive mass at zero representing no claims and a continuous

component for positive values representing the total amount for one or more claims.

The Tweedie distribution is defined as a Poisson sum of gamma random variables.

Specifically, suppose that N has a Poisson distribution with mean λ, representing

the number of claims. Let yj be an i.i.d. sequence, independent of N , with each yj
having a gamma distribution with parameters α and γ, representing the amount of

a claim. Then, SN = y1 + . . .+ yN is a Poisson sum of gammas.

To understand the mixture aspect of the Tweedie distribution, first note that it

is straightforward to compute the probability of zero claims as

Pr(SN = 0) = Pr(N = 0) = e−λ.

The distribution function can be computed using conditional expectations,

Pr(SN ≤ y) = e−λ +
∞∑
n=1

Pr(N = n) Pr(Sn ≤ y), y ≥ 0.

Because the sum of i.i.d. gammas is a gamma, Sn (not SN ) has a gamma distribution

with parameters nα and γ. Thus, for y > 0, the density of the Tweedie distribution

is

fS(y) =
∞∑
n=1

e−λ
λn

n!

γnα

Γ(nα)
ynα−1e−yγ . (6.3)

At first glance, this density does not appear to be a member of the linear expo-

nential family. To see the relationship, we first calculate the moments using iterated

expectations as

E SN = λ
α

γ
and Var SN =

λα

γ2
(1 + α).

Now, define three parameters µ, φ, p through the relations

λ =
µ2−p

φ(2− p)
, α =

2− p
p− 1

and
1

γ
= φ(p− 1)µp−1. (6.4)

Inserting these new parameters in equation (6.3) yields

fS(y) = exp

[
−1

φ

(
µ2−p

2− p
+

y

(p− 1)µp−1

)
+ S(y, p, φ)

]
,

where

expS(y, p, φ) =
1

y

∞∑
n=1

(
yα

φ1/(p−1)(2−p)(p−1)α

)n
n!Γ(nα)

.

Thus, the Tweedie distribution is a member of the linear exponential family. Easy

calculations show that

E SN = µ and Var SN = φµp, (6.5)
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where 1 < p < 2. The Tweedie distribution can also be viewed as a choice that is

intermediate between the Poisson and the gamma distributions.

For the Tweedie glm, we might use xi,T as a set of covariates and βT as the corre-

sponding set of regression coefficients. With a logarithmic link, µi = exp
(
x′i,TβT

)
.

For the distribution function, there is no closed form expression but we could com-

pute this directly, for example, using the R function ptweedie.

6.3.4 Comparing the Tweedie to a Frequency-Severity Model

As an alternative, consider a model composed of frequency and severity components.

Then, we might use a Poisson regression model for the frequency, thinking of the

number of claims for the ith person as:

Ni ∼ Poisson(λi), λi = exp(x′i,FβF ),

using a logarithmic link function. Here, xi,F is a set of covariates to be used in the

frequency modeling and βF is the corresponding set of regression coefficients.

For the severity, we might use a gamma regression also with a logarithmic link

function. Thus, we would model loss amounts as

yij ∼ gamma(α, γi), where
α

γi
= E yij = exp(x′i,SβS),

for j = 1, . . . , Ni. Similar to frequency, xi,S is a set of covariates to be used in the

severity modeling and βS is the corresponding set of regression coefficients. Thus,

the frequency and severity models need not employ the same set of covariates.

Putting the frequency and severity components together yields the aggregate loss

SN,i = yij + · · ·+ yi,Ni .

This has mean

E SN,i = E Ni × E yij = exp
(
x′i,FβF + x′i,SβS

)
(6.6)

and variance

Var SN,i = λi
α

γ2
i

(1 + α) = exp
(
x′i,FβF + 2x′i,SβS + ln(1 + 1/α)

)
. (6.7)

Note that for frequency-severity modeling, two parameters, λi and γi, vary with

i. To compute the distribution function, one could use the Tweedie for SN with the

R function ptweedie. This would be done by reversing the relations in (6.4) to get

p =
α+ 2

α+ 1
, µi = λi

α

γi
, and φiµ

p
i = λi

α

γ2
i

(1 + α). (6.8)

Note that if one begins with the frequency-severity model formulation, the scale

parameter φ depends on i.

6.4 Application: Massachusetts Automobile Claims

We investigate frequency-severity modeling using an insurance automobile claims

dataset studied in Ferreira and Minikel (2010), Ferreira and Minikel (2012). These

data, made public by the Massachusetts Executive Office of Energy and Environmen-

tal Affairs (EOEEA), summarizes automobile insurance experience from the state
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of Massachusetts in year 2006. The dataset consists of approximately 3.25 million

policies representing over half a billion dollars of claims.

Because the dataset represents experience from several insurance carriers, it is not

surprising that the amount of policyholder information is less than typically used

by large carriers that employ advanced analytic techniques. Nonetheless, we do

have basic ratemaking information that is common to all carriers, including primary

driver characteristics and territory groupings. At the vehicle level, we also have

mileage driven in a year, the focus of the Ferreira and Minikel study.

6.4.1 Data and Summary Statistics

From the Ferreira and Minikel (2010) data, we drew a random sample of 100,000

policyholders for our analysis. Table 6.1 shows the distribution of number of policies

by rating group and territory. The distribution of policies is reasonably level across

territories. In contrast, the distribution by rating group is more uneven; for example,

over three quarters of the policies are from the “Adult” group. The sparsest cell is

business drivers in territory 6; the most heavily populated cell is territory 4 adult

drivers.

Table 6.1. Number of Policies by Rating Group and Territory

Territory
Rating Group 1 2 3 4 5 6 Total

A – Adult 13,905 14,603 8,600 15,609 14,722 9,177 76,616
B – Business 293 268 153 276 183 96 1,269
I – Youthful with less 706 685 415 627 549 471 3,453

than 3 years Experience
M – Youthful with 700 700 433 830 814 713 4,190

3-6 years Experience
S – Senior Citizens 2,806 3,104 1,644 2,958 2,653 1,307 14,472

Totals 18,410 19,360 11,245 20,300 18,921 11,764 100,000

For this study, an insurance claim is from only bodily injury, property damage

liability, and personal injury protection coverages. These are the compulsory, and

thus fairly uniform, types of insurance coverages in Massachusetts; it is critical to

have uniformity in reporting standards in an intercompany study such as in Ferreira

and Minikel (2010)Ferreira and Minikel (2012). As a result, in Table 6.2, the averages

of the loss might appear to be lower than in other studies. This is because the “total”

is over the three compulsory coverages and does not represent, for example, losses

from the commonly available (and costly) comprehensive coverage. The average

total loss in Table 6.2 is 127.48. We also see important differences by rating group,

where average losses for inexperienced youthful drivers are over 3 times greater than

adult drivers. We can think of this total loss as a “pure premium.”

Table 6.2 shows that the average claim frequency is 4.3%. Specifically, for the

100,000 policies, there were 95,875 that had zero claims, 3,942 that had one claim,

176 that had two claims, and 7 that had three claims. The table also reports impor-

tant difference by rating group, where the average number of losses for inexperienced

youthful drivers are about 2.5 times greater than adult drivers.

Table 6.2 also summarizes information on the earned exposure, defined here as

the amount of time that the policy was in force in the study, and annual mileage.



146 Frequency and Severity Models

Annual mileage was estimated by Ferreira and Minikel (2010)Ferreira and Minikel

(2012) based on Massachusetts’ Commonwealth’s Registry of Motor Vehicles manda-

tory annual safety checks, combined with automobile information from the vehicle

identification number (commonly known using the acronym VIN). Interestingly, Ta-

ble 6.2 shows that only about 90% of our data possess valid information about the

number of miles driven, so that about 10% are missing.

Table 6.2. Averages by Rating Group

Rating Total Claim Earned Annual Number of Policies
Group Loss Number Exposure Mileage Total with Valid

Annual Miles

A 115.95 0.040 0.871 12,527 76,616 69,201
B 159.67 0.055 0.894 14,406 1,269 1,149
I 354.68 0.099 0.764 12,770 3,453 2,786

M 187.27 0.065 0.800 13,478 4,190 3,474
S 114.14 0.038 0.914 7,611 14,472 13,521

Total 127.48 0.043 0.870 11,858 100,000 90,131

Table 6.3 provides similar information but by territory. Here, we see that the

average total loss and number of claims for territory 6 is about twice that for territory

1.

Table 6.3. Averages by Territory

Territory Total Claim Earned Annual Number of Policies
Loss Number Exposure Mileage Total with Valid

Annual Miles

1 98.24 0.032 0.882 12,489 18,410 16,903
2 94.02 0.036 0.876 12,324 19,360 17,635
3 112.21 0.037 0.870 12,400 11,245 10,092
4 126.70 0.044 0.875 11,962 20,300 18,331
5 155.62 0.051 0.866 10,956 18,921 16,944
6 198.95 0.066 0.842 10,783 11,764 10,226

Total 127.48 0.043 0.870 11,858 100,000 90,131

There are 4,125 (= 100,000 - 95,875) policies with losses. To get a better handle

on claim sizes, Figure 6.1 provides smooth histograms of the loss distribution. The

left-hand panel is in the original (dollar) units, indicating a distribution that is right-

skewed. The right-hand panel shows the same distribution on a logarithmic scale

where we see a more symmetric behavior.

Do our rating factors affect claim size? To get some insights into this question,

Figure 6.2 shows the logarithmic loss distribution by each factor. The left-hand panel

shows the distribution by rating group, the right-hand panel shows the distribution

by territory. Neither figure suggests that the rating factors have a strong influence

on the size distribution.

6.4.2 Model Fitting

We report three types of fitted models here: (1) frequency models, (2) a severity

model, and (3) a pure premium model.

Table 6.4 summarizes the results from two frequency models, Poisson and nega-

tive binomial regression models. For both models, we used a logarithmic link with
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Fig. 6.1. Loss Distribution. The left-hand panel shows the distribution of loss, the right-
hand panel shows the same distribution but on a (natural) logarithmic scale.
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Fig. 6.2. Logarithmic Loss Distribution by Factor. The left-hand panel shows the distribu-
tion by rating group, the right-hand panel shows the distribution by territory.

logarithmic exposure as an offset variable. Focussing on the Poisson fit, we see that

the t-statistics indicate strong statistical significance for several levels of each factor,

rating group and territory. Additional tests confirm that they are statistically signif-

icant factors. Although not reported in Table 6.4, we also ran a model that included

interactions among terms. The interaction terms were statistically insignificant with

a p − value = 0.303 level. Hence, we report on the model without interactions, in

part because of our desire for simplicity.

We also ran an analysis including annual mileage. This variable turned out to

be strongly statistically significant with a t-statistic equal to 12.08. However, by

including this variable, we also lost 9,869 observations due to missing values in

annual mileage. From the perspective taken in the Ferreira and Minikel (2010,

2012) study, mileage is the key variable of interest and so the analyst would wish

to retain this variable. From another perspective, an analyst might be concerned

that including the mileage variable results in analyzing a biased sample; that is,

the roughly 10% population without mileage differs dramatically from the 90% with

mileage. Because of the biased sample concern, we treat the potential inclusion of

the mileage variable as an interesting follow-up study.
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For some audiences, analysts may wish to present the more flexible negative bino-

mial regression model. Table 6.4 shows that there is little differences in the estimated

coefficients for this data set, indicating that the simpler Poisson model is acceptable

for some purposes. We will use the Poisson distribution in our out-of-sample anal-

ysis in Section 6.4.3, primarily because we can get an analytic expression for the

predictive distribution (using the fact that a Poisson sum of independent gammas

has a Tweedie distribution).

Table 6.4. Comparison of Poisson and Negative Binomial Models

Poisson Negative Binomial Relativity
Effect Estimate t-statistic Estimate t-statistic (Poisson)

(Intercept) -2.636 -70.92 -2.639 -69.67

Rating Group
B 0.344 2.85 0.343 2.79 1.41
I 1.043 18.27 1.038 17.64 2.84
M 0.541 8.58 0.539 8.38 1.72
S -0.069 -1.49 -0.069 -1.48 0.93

Territory
1 -0.768 -14.02 -0.766 -13.79 0.46
2 -0.641 -12.24 -0.640 -12.04 0.53
3 -0.600 -9.87 -0.598 -9.70 0.55
4 -0.433 -8.81 -0.432 -8.64 0.65
5 -0.265 -5.49 -0.264 -5.37 0.77

Both models use logarithmic exposure as an offset
Estimated negative binomial dispersion parameter is 2.128
Reference levels are “A” for Rating Group and “6” for Territory

Table 6.5 summarizes the fit of a gamma regression severity model. As described

in Section 6.3.2, we use total losses divided by number of claims as the dependent

variable and the number of claims as the weight. We fit a gamma distribution

with a logarithmic link and the two factors, rating group and territory. Table 6.5

shows small t-statistics associated with levels of rating group and territory - only

“inexperienced” drivers are statistically significant. Additional tests indicate that

the territory factor is not statistically significant and the rating group factor is

marginally statistically significant with a p − value = 0.042. This is an interesting

finding.

Table 6.5 also shows the result of using claim number as an explanatory variable

in the severity model. For our data, the variable was not statistically significant

and so was not included in subsequent modeling. Had the variable been statistically

significant, a proxy would need to be developed for out-of-sample prediction. That

is, although we can condition on claim number and it may be a sensible explanatory

variable of (average) severity, it is not available apriori and so cannot be used directly

for out-of-sample prediction.

As an alternative to the frequency severity approach, we also fit a model using

“pure premiums,” total losses, as the dependent variable. Similar to the frequency

and severity models, we use a logarithmic link function with the factors rating group

and territory. The Tweedie distribution was used. We approximated the Tweedie

shape parameter p using profile likelihood and found that the value p = 1.5 was

acceptable. This was the value used in the final estimation.

Table 6.6 reports the fitted Tweedie regression model. The t-statistics associated
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Table 6.5. Gamma Regression Models

Without Number With Number

Effect Estimate t-statistic Estimate t-statistic

(Intercept) 7.986 137.33 7.909 76.87
Rating Group

B 0.014 0.08 0.020 0.11
I 0.222 2.49 0.218 2.43

M -0.013 -0.13 -0.015 -0.15
S 0.036 0.50 0.038 0.52

Territory
1 0.026 0.31 0.027 0.31
2 -0.137 -1.67 -0.138 -1.68
3 0.004 0.04 0.005 0.05
4 -0.029 -0.38 -0.029 -0.38
5 0.019 0.26 0.018 0.23

Claim Number – – 0.071 0.90

Estimated Dispersion 2.432 2.445
Parameter

Reference levels are “A” for Rating Group and “6” for Territory

with several levels of rating group and territory are statistically significant. This

suggests, and was confirmed through additional testing, that both factors are statis-

tically significant determinants of total loss. The table also reports the relativities

(computed as the exponentiated parameter estimates). Interestingly, these relativi-

ties turn out to be close to those of the frequency model; this is not surprising given

the lack of statistical significance associated with the factors in the severity model.

Table 6.6. Tweedie Regression Model

Effect Estimate t-statistic Relativity

(Intercept) 5.356 63.47

Rating Group
B 0.340 1.28 1.41
I 1.283 9.39 3.61

M 0.474 3.22 1.61
S -0.033 -0.36 0.97

Territory
1 -0.743 -6.53 0.48
2 -0.782 -6.92 0.46
3 -0.552 -4.37 0.58
4 -0.480 -4.44 0.62
5 -0.269 -2.50 0.76

This model uses logarithmic exposure as an offset
Estimated dispersion parameter is 2.371
Reference levels are “A” for Rating Group

and “6” for Territory

6.4.3 Out-of-Sample Model Comparisons

To compare the frequency-severity and pure premium approaches, we examined a

“held-out” validation sample. Specifically, from our original database, we drew a

random sample of 100,000 policies and developed the models reported in Section

6.4.2. Then, we drew an (independent) sample of 50,000 policies. For the frequency-
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severity model, our predictions are based on equation (6.6), using Poisson frequency

coefficients in Table 6.4 to estimate βF , severity coefficients in Table 6.5 to estimate

βS , and with values of the independent variables from the held-out validation sam-

ple. The predictions for the Tweedie model followed similarly using the coefficients

reported in Table 6.6.

Figure 6.3 compares the predictions for frequency-severity and the pure premium

models. The left-hand panel shows the distribution of our pure premium predictions.

The right-hand panel shows the strong relationship between the two predictions; it

turns out that the correlation is approximately 0.999. For the purposes of predicting

the mean, typically the primary focus of ratemaking, these two models yield virtually

indistinguishable predictions. Both models provided some ability to predict total

losses; the (Spearman) correlation between held-out losses and (either) predictor

turned out to be 8.2%.
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Fig. 6.3. Out-of-Sample Mean Performance. The left-hand panel shows the distribution
of the out-of-sample predictions calculated using the pure premium, or Tweedie, model.
The right-hand panel shows the strong relationship between the scores from the frequency-
severity and the pure premium models.

Because the mean predictor did not provide a way of discriminating between the

pure premium and frequency-severity models, we also looked to tail percentiles.

Specifically, in the Tweedie regression model, in Section 6.4.2 we cited p = 1.5

and φ̂ = 2.371 and described how to estimate µ̂i for each observation i. Then, in

Section 6.3.3 we noted that one could use the pTweedie function in R to get the

distribution function. We did this for each held-out observation and evaluated it

using the actual realized value. Recall the “probability integral transform,” a result

in probability theory that says that when a continuous random variable is evaluated

using its distribution function, the resulting transformed random variable should

have a uniform (on [0,1]) distribution. Thus, if our distribution function calculation

is approximately correct, then we can expected the held-out transformed random

variables to have an approximate uniform distribution.

The procedure for Poisson frequency and gamma severity models is similar but a

bit more complex. In Section 6.3.3, we noted that a Poisson sum of gamma random

variables has a Tweedie distribution. So, even though we estimate the frequency

and severity parameters separately, they can still be combined when we look at the

loss distribution. In display (6.8), we show explicitly how to get Tweedie parameters
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from the Poisson frequency and gamma severity models. Then, as with the Tweedie

GLM, we can calculate, the transformed (using the distribution function) actual

realized value.

Table 6.7 provides the comparisons for selected percentiles. Both models provide

disappointing results below the 98th percentile; perhaps this is to be expected for

a distribution with approximately 96% zeros. For the 99th percentile and above,

the Tweedie does a good job tracking the actual held-out losses. In comparison, the

frequency-severity approach is only competitive at the 99.9th percentile. On the one

hand, this table suggests that fitting the tails of the distribution is a more complex

problem that requires more refined data and sophisticated models. On the other

hand, the similarity of results in Figure 6.3 when predicting the mean suggests a

robustness of the GLM procedures that gives the analyst confidence when providing

recommendations.

Table 6.7. Out-of-Sample Quantile Performance

Percentile Pure Frequency
Premium Severity

0.960 0.50912 0.42648
0.970 0.85888 0.79766
0.980 0.93774 0.86602
0.985 0.97092 0.90700
0.990 0.99294 0.93948
0.995 0.99528 0.97722
0.999 0.99784 0.99870

6.5 Further Reading and References

There is a rich literature on modeling the joint frequency and severity distribution

of automobile insurance claims. There has been substantial interest in statistical

modeling of claims frequency yet the literature on modeling claims severity, especially

in conjunction with claims frequency, is less extensive. One possible explanation,

noted by Coutts (1984), is that most of the variation in overall claims experience

may be attributed to claim frequency. Coutts (1984) also remarks that the first

paper to analyze claim frequency and severity separately seems to be Kahane and

Levy (1975), see also Weisberg and Tomberlin (1982).

In the econometrics literature, Cragg (1971) introduced different frequency and

severity covariates in two-part models, citing an example from fire insurance. Mul-

lahy (1998) provides and overview of two-part models and discusses healthcare ap-

plications.

Brockman and Wright (1992) provide an early overview of how statistical model-

ing of claims and severity can be helpful for pricing automobile coverage. Renshaw

(1994) shows how generalized linear models can be used to analyze both the fre-

quency and severity portions based on individual policyholder level data. At the in-

dividual policyholder level, Frangos and Vrontos (2001) examined a claim frequency

and severity model, using negative binomial and Pareto distributions, respectively.

They used their statistical model to develop experience rated (bonus-malus) premi-

ums.

A trend in recent research has been to explore multivariate frequency-severity
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models, examining different lines of business or different perils simultaneously. The

first papers in this area seem to be due to Pinquet (1997)Pinquet (1998), fitting not

only cross-sectional data but also following policyholders over time. Pinquet was

interested in two lines of business, claims at fault and not at fault with respect to

a third party. Frees et al. (2012) examine multivariate two-part models for different

perils in homeowners insurance. Frees et al. (2013) review multivariate two-part

models, examining several types of medical care expenditures jointly.
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6.6 Appendices

6.6.1 Sample Average Distribution in Linear Exponential Families

The distribution of the linear exponential family with parameters θ and φ is

f(y; θ, φ) = exp

(
yθ − b(θ)

φ
+ S (y, φ)

)
.

With this notation, it can be readily shown (e.g., Frees, 2010, Chapter 13) that the

moment generation function can be expressed as

M(s; θ, φ) = E esy = exp

(
b(θ + sφ)− b(θ)

φ

)
.

Suppose that y1, . . . , ym are independently distributed with this moment generating

function. Then, the moment generating function of the sample average is

E exp

(
s
y1 + · · ·+ ym

m

)
=

m∏
i=1

E exp
( s
m
yi

)
=

m∏
i=1

exp

(
b(θ + s

mφ)− b(θ)
φ

)

= exp

(
b(θ + s φm)− b(θ)

φ/m

)
= M(s; θ, φ/m).

Thus, the sample average is from the same linear exponential family with parameters

θ and φ/m.

6.6.2 Over-Sampling Claims

If you work with government surveys such as the Medical Expenditure Survey

(MEPS) in Chapter 2 or the Survey of Consumer Finances (SCF) in Frees (2010),

you will have seen that it is common for such surveys to use unequal probabilities

when drawing samples from larger populations. For example, the MEPS data over-

samples poor and minority individuals; the SCF over-samples the wealthy. The idea

is to draw a larger proportion of a subset of the population that is of interest in the

study. In insurance, it is common to “over-sample” policyholders with claims.

Specifically, consider the two-part model introduced in Section 6.2.1 and consid-

ered in more detail in Section 6.3.1. Suppose that we have a very large database

consisting of {ri, yi,xi}, i = 1, . . . , N observations. We want to make sure to get

plenty of ri = 1 (corresponding to claims or “cases”) in our sample, plus a sample of

ri = 0 (corresponding to non-claims or “controls”). Thus, we split the data set into

two pieces. For the first piece consisting of observations with ri = 1, take a random

sample with probability τ1. Similarly, for the second piece consisting of observations

with ri = 0, take a random sample with probability τ0. For example, we might use

τ1 = 1 and τ0 = 0.2, corresponding to taking all of the claims and a 20% sample of

non-claims. Thus, the “sampling weights” τ0 and τ1 are considered known to the

analyst. This over-sampling procedure is sometimes known as the “case-control”

method.

How does this sampling procedure affect the inference in a two-part model?

Think about this question from a likelihood perspective. To develop the likelihood,
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let {si = 1} denote the event that the observation is selected to be included in the

sample and {si = 0} means that it is not included. Suppressing the {i} subscript,

we decompose the likelihood of the dependent variables that can be observed as:

f (r, y|s = 1) = f (r|s = 1) × f (y|s = 1, r)

“observable” likelihood = conditional frequency × conditional severity.

For the conditional severity, it is common to assume that f (y|s = 1, r) = f (y|r) -

given the absence or presence of a claim, the selection mechanism has no affect on

the amount. This is an assumption that may need to be verified but does seem to

commonly hold.

For the conditional frequency, here are some basic probability calculations to show

how the conditional (on selection) claim frequency relates to the (population) claim

frequency. Conditional on {ri = 1}, we have that Pr(si = 1|ri = 1) = τ1, a Bernoulli

distribution. Similarly, Pr(si = 1|ri = 0) = τ0. From this, we have

Pr(ri = 1, si = 1) = Pr(si = 1|ri = 1) Pr(ri = 1) = τ1πi

Pr(ri = 0, si = 1) = Pr(si = 1|ri = 0) Pr(ri = 1) = τ0(1− πi)

Thus, the probability of the observation being selected into the sample is

Pr(si = 1) = τ1πi + τ0(1− πi).

Further, the probability of observing a claim in the sample is:

Pr(ri = 1|si = 1) =
Pr(ri = 1, si = 1)

Pr(si = 1)
=

τ1πi
τ1πi + τ0(1− πi)

=
τ1πi/(1− πi)

τ1πi/(1− πi) + τ0
.

Now, using the logit form in equation (6.1), we can express the odds ratio as

πi
1− πi

=

Ei
1+exp(−x′iβ)

1− Ei
1+exp(−x′iβ)

=
Ei

1 + exp(−x′iβ)− Ei
. (6.9)

Thus,

Pr(ri = 1|si = 1) =
τ1

Ei
1+exp(−x′iβ)−Ei

τ1
Ei

1+exp(−x′iβ)−Ei + τ0

=
τ1Ei

τ1Ei + τ0(1 + exp(−x′iβ)− Ei)

=
τ1Ei

ci + τ0 exp(−x′iβ)
,

where ci = τ1Ei + τ0(1−Ei). From this, we can express the probability of observing

a claim in the sample as

Pr(ri = 1|si = 1) =
E∗i

1 + γi exp(−x′iβ)
(6.10)

where E∗i = τ1Ei/ci = τ1Ei
τ1Ei+τ0(1−Ei) and γi = τ0/ci = τ0

τ1Ei+τ0(1−Ei) .

In summary, equation (6.10) has the same form as equation (6.1) with a new

definition of exposure and the introduction of an offset term, − ln γi, assuming that
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you use logistic regression (not probit) for your claim frequency modeling. If all of

your exposures are identically equal to 1 (Ei ≡ 1), then γi is a constant and you

simply re-interpret the constant in the systematic component x′iβ (which we typically

ignore). If exposures are not constant, then equation (6.10) gives a straightforward

method of adjusting the exposure and introducing an offset term, running the usual

logistic regression software without the need for specialized software routines.


