Regression Modeling with Actuarial and Financial Applications

Chapter 11: Categorical Dependent Variables

Chapter 13: Generalized Linear Models

Outline

Chapter 11 - Binary Dependent Variables Logistic and probit regression models

Using nonlinear functions of explanatory variables

Threshold interpretation

Random Utility Interpretation

Logistic regression

Inference for logistic and probit regression models

Parameter estimation

Inference

Example: Medical Expenditures

Data Dependent Variable

Chapter 13 - Introduction

GLM Model

Linear Exponential Family of Distributions Link Functions Estimation

Application: Medical Expenditures Tweedie Distribution

Chapter 11: Categorical Dependent Variables

Example. MEPS Hospital Utilization

• Consider an extensive database from the Medical Expenditure Panel Survey (MEPS) on hospitalization utilization

		Male	Female
Not hospitalized	y = 0	902 (95.3%)	941 (89.3%)
Hospitalized	y = 1	44 (4.7%)	113 (10.7%)
Total		946	1,054

Table: Hospitalization by Gender

 $y_i = \left\{ \begin{array}{ll} 1 & \textit{ith person was hospitalized during the sample period} \\ 0 & \textit{otherwise} \end{array} \right.$

- Like linear regression techniques, we are interested in using characteristics of a person, such as their age, sex, education, income, prior health status and so forth, to help explain the dependent variable *y*.
- However, now the dependent variable is discrete and not even approximately normally distributed.

Linear Probability Model

- y_i has a Bernoulli distribution
 - The probability that the response equals 1 by $\pi_i = \Pr(y_i = 1)$.
 - The mean response is $E y_i = 0 \times Pr(y_i = 0) + 1 \times Pr(y_i = 1) = \pi_i$.
 - Thus, the variance is related to the mean through the expression Var $y_i = \pi_i(1 \pi_i)$.

Linear Probability Model

- y_i has a Bernoulli distribution
 - The probability that the response equals 1 by $\pi_i = \Pr(y_i = 1)$.
 - The mean response is $E y_i = 0 \times Pr(y_i = 0) + 1 \times Pr(y_i = 1) = \pi_i$.
 - Thus, the variance is related to the mean through the expression Var $y_i = \pi_i(1 \pi_i)$.
- The linear probability model is

$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i,$$

- Assuming E $\varepsilon_i = 0$, we have that E $y_i = \mathbf{x}'_i \boldsymbol{\beta} = \pi_i$
- Var $y_i = \mathbf{x}'_i \boldsymbol{\beta} (1 \mathbf{x}'_i \boldsymbol{\beta}).$

Drawbacks of the Linear Probability Model

• The expected response is a probability and thus must vary between 0 and 1. However, the linear combination, $\mathbf{x}'_i\beta$, can vary between negative and positive infinity. This mismatch implies, for example, that fitted values may be unreasonable.

Drawbacks of the Linear Probability Model

- The expected response is a probability and thus must vary between 0 and 1. However, the linear combination, $\mathbf{x}'_i\beta$, can vary between negative and positive infinity. This mismatch implies, for example, that fitted values may be unreasonable.
- Linear models assume homoscedasticity (constant variance) yet the variance of the response depends on the mean that varies over observations. The problem of varying variability is known as *heteroscedasticity*.

Drawbacks of the Linear Probability Model

- The expected response is a probability and thus must vary between 0 and 1. However, the linear combination, $\mathbf{x}'_i\beta$, can vary between negative and positive infinity. This mismatch implies, for example, that fitted values may be unreasonable.
- Linear models assume homoscedasticity (constant variance) yet the variance of the response depends on the mean that varies over observations. The problem of varying variability is known as *heteroscedasticity*.
- The response must be either a 0 or 1 although the regression models typically regards distribution of the error term as continuous. This mismatch implies, for example, that the usual residual analysis in regression modeling is meaningless.

Using nonlinear functions of explanatory variables

- The linear combination of explanatory variables, x_i'β, is sometimes known as the "systematic component."
- We consider a function of explanatory variables, $\pi_i = \pi(\mathbf{x}'_i\beta) = \Pr(y_i = 1 | \mathbf{x}_i).$
- We focus on two special cases of the function $\pi(.)$:
 - $\pi(z) = \frac{1}{1 + \exp(-z)} = \frac{e^z}{1 + e^z}$, the logit case, and
 - $\pi(z) = \Phi(z)$, the probit case.
 - $\Phi(.)$ is the standard normal distribution function.
- Note that $\pi(z) = z$ yields the linear probability model.
- The inverse of the function, π^{-1} , is linear in the explanatory variables, that is, $\pi^{-1}(\pi_i) = \mathbf{x}'_i \beta$.
- The logit and probit are really close.

Comparison of Logit and Probit Distribution Functions

Threshold interpretation

- Both the logit and probit are special cases.
- To this end, suppose that there exists an underlying linear model, $y_i^* = \mathbf{x}_i' \beta + \varepsilon_i^*$.
 - We do not observe the response y_i^* yet interpret it to be the "propensity" to possess a characteristic.
 - For example, we might think about the speed of a horse as a measure of its propensity to win a race.

Threshold interpretation

- Both the logit and probit are special cases.
- To this end, suppose that there exists an underlying linear model, $y_i^* = \mathbf{x}_i' \beta + \varepsilon_i^*$.
 - We do not observe the response y_i^* yet interpret it to be the "propensity" to possess a characteristic.
 - For example, we might think about the speed of a horse as a measure of its propensity to win a race.
- Under the threshold interpretation, we do not observe the propensity but we do observe when the propensity crosses a threshold.
 - It is customary to assume that this threshold is 0, for simplicity.
 - We observe

$$y_i = \begin{cases} 0 & y_i^* \le 0 \\ 1 & y_i^* > 0 \end{cases}$$

Threshold interpretation - Logit Case

Assume a logit distribution function for the disturbances, so that

$$\Pr(\varepsilon_i^* \le a) = \frac{1}{1 + \exp(-a)}.$$

• Because the logit distribution is symmetric about zero, we have that $Pr(\varepsilon_i^* \le a) = Pr(-\varepsilon_i^* \le a)$.

$$\begin{aligned} \pi_i &= & \Pr(y_i = 1 | \mathbf{x}_i) = \Pr(y_i^* > 0) = \Pr(\varepsilon_i^* \le \mathbf{x}_i' \beta) \\ &= & \frac{1}{1 + \exp(-\mathbf{x}_i' \beta)} = \pi(\mathbf{x}_i' \beta). \end{aligned}$$

- This establishes the threshold interpretation for the logit case.
- The development for the probit case is similar, and is omitted.

ependent reg	ression models		Example: Medical Expenditures O OOOO	Chapter 13 - Introduction	GLM Model	Estimation	Application: Medical Expenditures 00000	Tw O
--------------	----------------	--	---	------------------------------	-----------	------------	---	---------

Random utility interpretation

- Think of an individual as selecting between two choices.
 - Preferences among choices are indexed by an unobserved utility function
 - Individuals select the choice that provides the greater utility.
- For the *i*th subject, we use the notation *u_i* for this utility.
 - Choice 1: $U_{i1} = u_i(V_{i1} + \varepsilon_{i1})$
 - Choice 2: $U_{i2} = u_i(V_{i2} + \varepsilon_{i2})$
 - Utility = function of an underlying value plus random noise.
- Choice *j* = 1 means

•
$$U_{i1} > U_{i2}$$

• $y_i = 1$

Logistic and probit regression models	Inference for logistic and probit regression models	Example: Medical Expenditures	Chapter 13 - Introduction	GLM Model	Estimation	Application: Medical Expenditures 00000

Random utility interpretation

- Think of an individual as selecting between two choices.
 - Preferences among choices are indexed by an unobserved utility function
 - Individuals select the choice that provides the greater utility.
- For the *i*th subject, we use the notation *u_i* for this utility.
 - Choice 1: $U_{i1} = u_i(V_{i1} + \varepsilon_{i1})$
 - Choice 2: $U_{i2} = u_i(V_{i2} + \varepsilon_{i2})$
 - Utility = function of an underlying value plus random noise.
- Choice *j* = 1 means
 - $U_{i1} > U_{i2}$
 - $y_i = 1$
- Assuming that *u_i* is a strictly increasing function, we have

$$\begin{aligned} \Pr(y_i &= 1) = \Pr(U_{i2} < U_{i1}) = \Pr(u_i(V_{i2} + \varepsilon_{i2}) < u_i(V_{i1} + \varepsilon_{i1})) \\ &= \Pr(\varepsilon_{i2} - \varepsilon_{i1} < V_{i1} - V_{i2}). \end{aligned}$$

- Assume that $V_{i2} = 0$ and $V_{i1} = \mathbf{x}'_i \boldsymbol{\beta}$.
- We may take the difference in the errors, ε_{i2} ε_{i1}, to be normal or logistic, corresponding to the probit and logit cases, respectively.

Logistic regression

- Logit case permits closed-form expressions, unlike the probit (normal distribution function).
 - Logistic regression is another phrase used to describe the logit case.
- Using $p = \pi(z)$, the inverse of π can be calculated as $z = \pi^{-1}(p) = ln(p/(1-p)).$
 - To simplify future presentations, we define

$$\operatorname{logit}(\pi) = \ln\left(\frac{\pi}{1-\pi}\right)$$

to be the logit function.

 With logistic regression model, we represent the linear combination of explanatory variables as the logit of the probability, that is, x'_iβ = logit(π_i).

Odds interpretation

- When the response *y* is binary, knowing only the probability *p* summarizes the distribution.
 - In some applications, a simple transformation of *p* has an important interpretation.
 - An important transformation: the *odds*, given by p/(1-p).
 - For example, suppose that *y* indicates whether or not a horse wins a race, that is, *y* = 1 if the horse wins and *y* = 0 if the horse does not.
 - Interpret p to be the probability of the horse winning the race
 - As an example, suppose that p = 0.25. Then, the odds of the horse winning the race is 0.25/(1-0.25) = 0.3333.

Odds interpretation

- When the response *y* is binary, knowing only the probability *p* summarizes the distribution.
 - In some applications, a simple transformation of *p* has an important interpretation.
 - An important transformation: the *odds*, given by p/(1-p).
 - For example, suppose that *y* indicates whether or not a horse wins a race, that is, *y* = 1 if the horse wins and *y* = 0 if the horse does not.
 - Interpret p to be the probability of the horse winning the race
 - As an example, suppose that p = 0.25. Then, the odds of the horse winning the race is 0.25/(1-0.25) = 0.3333.
- Odds have a useful interpretation from a betting standpoint.
 - Suppose that we are playing a fair game and that we place a bet of \$1 with odds of one to three.
 - If the horse wins, then we get our \$1 back plus winnings of \$3.
 - If the horse loses, then we lose our bet of \$1.
- The logit is the logarithmic odds function, also known as the *log* odds .

Logistic regression parameter interpretation

- Assume that *j*th explanatory variable, *x_{ij}*, is either 0 or 1.
- With the notation $\mathbf{x}_i = (x_{i1}, \dots, x_{ij}, \dots, x_{iK})'$, we may interpret

$$\begin{aligned} \beta_j &= (x_{i1}, \dots, 1, \dots, x_{iK})'\beta - (x_{i1}, \dots, 0, \dots, x_{iK})'\beta \\ &= \ln\left(\frac{\Pr(y_i = 1|x_{ij} = 1)}{1 - \Pr(y_i = 1|x_{ij} = 1)}\right) - \ln\left(\frac{\Pr(y_i = 1|x_{ij} = 0)}{1 - \Pr(y_i = 1|x_{ij} = 0)}\right) \end{aligned}$$

• Exponentiating, we have the odds ratio

regression models

Logistic and probit regression models

ŏoeo

$$e^{\beta_j} = \frac{\Pr(y_i = 1 | x_{ij} = 1) / (1 - \Pr(y_i = 1 | x_{ij} = 1))}{\Pr(y_i = 1 | x_{ij} = 0) / (1 - \Pr(y_i = 1 | x_{ij} = 0))}.$$

• The numerator of this expression is the odds when $x_{ij} = 1$, whereas the denominator is the odds when $x_{ij} = 0$.

Logistic regression parameter interpretation

- Assume that *j*th explanatory variable, *x_{ij}*, is either 0 or 1.
- With the notation $\mathbf{x}_i = (x_{i1}, \dots, x_{ij}, \dots, x_{iK})^{\prime}$, we may interpret

$$\begin{aligned} \beta_j &= (x_{i1}, \dots, 1, \dots, x_{iK})'\beta - (x_{i1}, \dots, 0, \dots, x_{iK})'\beta \\ &= \ln\left(\frac{\Pr(y_i = 1|x_{ij} = 1)}{1 - \Pr(y_i = 1|x_{ij} = 1)}\right) - \ln\left(\frac{\Pr(y_i = 1|x_{ij} = 0)}{1 - \Pr(y_i = 1|x_{ij} = 0)}\right) \end{aligned}$$

• Exponentiating, we have the odds ratio

roggesion models

Logistic and probit regression models

ŏoeo

$$e^{\beta_j} = \frac{\Pr(y_i = 1 | x_{ij} = 1) / (1 - \Pr(y_i = 1 | x_{ij} = 1))}{\Pr(y_i = 1 | x_{ij} = 0) / (1 - \Pr(y_i = 1 | x_{ij} = 0))}.$$

- The numerator of this expression is the odds when $x_{ij} = 1$, whereas the denominator is the odds when $x_{ij} = 0$.
- Thus, we can say that the odds when $x_{ij} = 1$ are $\exp(\beta_j)$ times as large as the odds when $x_{ij} = 0$.
 - To illustrate, if $\beta_j = 0.693$, then $\exp(\beta_j) = 2$.
 - From this, we say that the odds (for y = 1) are twice as great for $x_{ij} = 1$ as $x_{ij} = 0$.

Logistic regression parameter interpretation

 Similarly, assuming that *j*th explanatory variable is continuous (differentiable), we have

$$\beta_{j} = \frac{\partial}{\partial x_{ij}} \mathbf{x}' \boldsymbol{\beta} = \frac{\partial}{\partial x_{ij}} \ln \left(\frac{\Pr(y_{i} = 1 | x_{ij})}{1 - \Pr(y_{i} = 1 | x_{ij})} \right)$$
$$= \frac{\frac{\partial}{\partial x_{ij}} \Pr(y_{i} = 1 | x_{ij}) / (1 - \Pr(y_{i} = 1 | x_{ij}))}{\Pr(y_{i} = 1 | x_{ij}) / (1 - \Pr(y_{i} = 1 | x_{ij}))}.$$

 Thus, we may interpret β_j as the proportional change in the odds, known as an *elasticity* in economics.

Likelihoods for maximum likelihood estimation

- The customary method of estimation is maximum likelihood.
- To provide intuition, we outline the ideas in the context of binary dependent variable regression models.
- The likelihood is the observed value of the density or mass function.
- · For a single observation, the likelihood is

$$\begin{cases} 1 - \pi_i & \text{if } y_i = 0 \\ \pi_i & \text{if } y_i = 1 \end{cases}$$

Likelihoods for maximum likelihood estimation

- The customary method of estimation is maximum likelihood.
- To provide intuition, we outline the ideas in the context of binary dependent variable regression models.
- The likelihood is the observed value of the density or mass function.
- · For a single observation, the likelihood is

$$\begin{cases} 1 - \pi_i & \text{if } y_i = 0 \\ \pi_i & \text{if } y_i = 1 \end{cases}$$

- The objective of maximum likelihood estimation is to find the parameter values that produce the largest likelihood.
 - Finding the maximum of the logarithmic function yields the same solution as finding the maximum of the corresponding function.
 - Because it is generally computationally simpler, we consider the logarithmic (log-) likelihood, written as

$$\begin{cases} \ln(1-\pi_i) & \text{if } y_i = 0\\ \ln \pi_i & \text{if } y_i = 1 \end{cases}$$

Log likelihood

More compactly, the log-likelihood of a single observation is

$$y_i \ln \pi(\mathbf{x}'_i \boldsymbol{\beta}) + (1 - y_i) \ln \left(1 - \pi(\mathbf{x}'_i \boldsymbol{\beta})\right),$$

where $\pi_i = \pi(\mathbf{x}'_i \beta)$.

Assuming independence, the log-likelihood of the data set is

$$L(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left\{ y_i \ln \pi(\mathbf{x}'_i \boldsymbol{\beta}) + (1 - y_i) \ln \left(1 - \pi(\mathbf{x}'_i \boldsymbol{\beta}) \right) \right\}.$$

- The (log) likelihood is viewed as a function of the parameters, with the data held fixed.
- In contrast, the joint probability mass (density) function is viewed as a function of the realized data, with the parameters held fixed.
- The method of maximum likelihood means finding the values of β that maximize the log-likelihood.

Parameter estimation

- The customary method of finding the maximum is taking partial derivatives with respect to the parameters of interest and finding roots of the these equations.
- In this case, taking partial derivatives with respect to β yields the *score equations*

$$\frac{\partial}{\partial \beta} L(\beta) = \sum_{i=1}^{n} \mathbf{x}_{i} \left(y_{i} - \pi(\mathbf{x}_{i}'\beta) \right) \frac{\pi'(\mathbf{x}_{i}'\beta)}{\pi(\mathbf{x}_{i}'\beta)(1 - \pi(\mathbf{x}_{i}'\beta))} = \mathbf{0}.$$

- The solution of these equations, say $\mathbf{b}_{\textit{MLE}},$ is the maximum likelihood estimator.

Parameter estimation

- The customary method of finding the maximum is taking partial derivatives with respect to the parameters of interest and finding roots of the these equations.
- In this case, taking partial derivatives with respect to β yields the *score equations*

$$\frac{\partial}{\partial \beta} L(\beta) = \sum_{i=1}^{n} \mathbf{x}_{i} \left(y_{i} - \pi(\mathbf{x}_{i}'\beta) \right) \frac{\pi'(\mathbf{x}_{i}'\beta)}{\pi(\mathbf{x}_{i}'\beta)(1 - \pi(\mathbf{x}_{i}'\beta))} = \mathbf{0}.$$

- The solution of these equations, say $\mathbf{b}_{\textit{MLE}},$ is the maximum likelihood estimator.
- To illustrate, for the logit case, the score equations reduce to

$$\frac{\partial}{\partial \beta} L(\beta) = \sum_{i=1}^{n} \mathbf{x}_{i} \left(y_{i} - \pi(\mathbf{x}_{i}^{\prime} \beta) \right) = \mathbf{0}.$$

where $\pi(z) = 1/(1 + \exp(-z))$.

 When the model contains an intercept term, we can write the first row of this expression as Σⁿ_{i=1} (y_i − π(x'_ib_{MLE})) = 0, so the sum of observed values equals the sum of fitted values.

Inference – Regression coefficient standard errors

• An estimator of the asymptotic variance of *β* may be calculated taking partial derivatives of the score equations.

$$\mathbf{I}(\boldsymbol{\beta}) = \frac{\partial^2}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} L(\boldsymbol{\beta})$$

is the information matrix.

• To illustrate, using the logit function, straightforward calculations show that the information matrix is

$$\mathbf{I}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}' \boldsymbol{\pi}(\mathbf{x}_{i}' \boldsymbol{\beta}) (1 - \boldsymbol{\pi}(\mathbf{x}_{i}' \boldsymbol{\beta})).$$

• The square root of the (j+1)st diagonal element of this matrix evaluated at $\beta = \mathbf{b}_{MLE}$ yields the standard error for $b_{j,MLE}$, denoted as $se(b_{j,MLE})$.

Inference – Model fit

- To assess the overall model fit, it is customary to cite *likelihood ratio test statistics* in nonlinear regression models.
- For example, to test the overall model adequacy H₀: β = 0, we use the statistic

$$LRT = 2 \times (L(\mathbf{b}_{MLE}) - L_0),$$

where L_0 is the maximized log-likelihood with only an intercept term.

- Under the null hypothesis *H*₀, this statistic has a chi-square distribution with *K* degrees of freedom.
- Another measure of model fit is the so-called $max scaled R^2$, defined as $R_{ms}^2 = R^2/R_{max}^2$, where

$$R^{2} = 1 - \left(\frac{\exp(L_{0}/N)}{\exp(L(\mathbf{b}_{MLE})/N)}\right)$$

and $R_{\text{max}}^2 = 1 - \exp(L_0/N)^2$. Here, L_0/N represents the average value of this log-likelihood.

Data

- Data from the Medical Expenditure Panel Survey (MEPS), conducted by the U.S. Agency of Health Research and Quality (AHRQ).
 - A probability survey that provides nationally representative estimates of health care use, expenditures, sources of payment, and insurance coverage for the U.S. civilian population.
 - Collects detailed information on individuals of each medical care episode by type of services including
 - physician office visits,
 - hospital emergency room visits,
 - hospital outpatient visits,
 - hospital inpatient stays,
 - all other medical provider visits, and
 - use of prescribed medicines.
 - This detailed information allows one to develop models of health care utilization to predict future expenditures.
 - We consider MEPS data from the first panel of 2003 and take a random sample of n = 2,000 individuals between ages 18 and 65.

Dependent Variable

- Our dependent variable is an indicator of positive expenditures for inpatient admissions.
- For MEPS, inpatient admissions include persons who were admitted to a hospital and stayed overnight.
- In contrast, outpatient events include hospital outpatient department visits, office-based provider visits and emergency room visits excluding dental services.
 - Hospital stays with the same date of admission and discharge, known as "zero-night stays," were included in outpatient counts and expenditures.
 - Payments associated with emergency room visits that immediately preceded an inpatient stay were included in the inpatient expenditures.
 - Prescribed medicines that can be linked to hospital admissions were included in inpatient expenditures, not in outpatient utilization.

Percent of Positive Expenditures by Explanatory Variable

Category	Variable	Description	Percent	Percent
			of data	Positive
				Expend
Demography	AGE	Age in years between 18 to 65 (mean: 3		
	GENDER	1 if female	52.7	10.7
		0 if male	47.3	4.7
Ethnicity	ASIAN	1 if Asian	4.3	4.7
	BLACK	1 if Black	14.8	10.5
	NATIVE	1 if Native	1.1	13.6
	WHITE	Reference level	79.9	7.5
Region	NORTHEAST	1 if Northeast	14.3	10.1
-	MIDWEST	1 if Midwest	19.7	8.7
	SOUTH	1 if South	38.2	8.4
	WEST	Reference level	27.9	5.4
Education	COLLEGE	 if college or higher degree 	27.2	6.8
	HIGHSCHOOL	1 if high school degree	43.3	7.9
	Reference level is	lower than high school degree	29.5	8.8
Self-rated	POOR	1 if poor	3.8	36.0
physical	FAIR	1 if fair	9.9	8.1
health	GOOD	1 if good	29.9	8.2
	VGOOD	1 if very good	31.1	6.3
	Reference level is	excellent health	25.4	5.1
Self-rated	MNHPOOR	1 if poor or fair	7.5	16.8
mental health		0 if good to excellent mental health	92.6	7.1
Any activity	ANYLIMIT	 if any functional/activity limitation 	22.3	14.6
limitation		0 if otherwise	77.7	5.9
Income	HINCOME	1 if high income	31.6	5.4
compared to	MINCOME	1 if middle income	29.9	7.0
poverty line	LINCOME	1 if low income	15.8	8.3
	NPOOR	1 if near poor	5.8	9.5
	Reference level is		17.0	13.0
Insurance	INSURE	1 if covered by public/private health	77.8	9.2
coverage		insurance in any month of 2003		
,		0 if have no health insurance in 2003	22.3	3.1
Total			100.0	7.9

	Chapter 11 -	
	Binary Dependent	
0	0.0000	

robit Inference for dels logistic and probit regnession models Example: Medical Expenditures

er 13 -Iction M Model

Estimation

pplication: Medical Tweedie xpenditures

Comparison of Binary Regression Models

	Logistic			Probit		
	Full Model		Reduced Model		Reduced Model	
	Parameter		Parameter		Parameter	
Effect	Estimate	t-ratio	Estimate	t-ratio	Estimate	t-ratio
Intercept	-4.239	-8.982	-4.278	-10.094	-2.281	-11.432
AGE	-0.001	-0.180				
GENDER	0.733	3.812	0.732	3.806	0.395	4.178
ASIAN	-0.219	-0.411	-0.219	-0.412	-0.108	-0.427
BLACK	-0.001	-0.003	0.004	0.019	0.009	0.073
NATIVE	0.610	0.926	0.612	0.930	0.285	0.780
NORTHEAST	0.609	2.112	0.604	2.098	0.281	1.950
MIDWEST	0.524	1.904	0.517	1.883	0.237	1.754
SOUTH	0.339	1.376	0.328	1.342	0.130	1.085
COLLEGE	0.068	0.255	0.070	0.263	0.049	0.362
HIGHSCHOOL	0.004	0.017	0.009	0.041	0.003	0.030
POOR	1.712	4.385	1.652	4.575	0.939	4.805
FAIR	0.136	0.375	0.109	0.306	0.079	0.450
GOOD	0.376	1.429	0.368	1.405	0.182	1.412
VGOOD	0.178	0.667	0.174	0.655	0.094	0.728
MNHPOOR	-0.113	-0.369				
ANYLIMIT	0.564	2.680	0.545	2.704	0.311	3.022
HINCOME	-0.921	-3.101	-0.919	-3.162	-0.470	-3.224
MINCOME	-0.609	-2.315	-0.604	-2.317	-0.314	-2.345
LINCOME	-0.411	-1.453	-0.408	-1.449	-0.241	-1.633
NPOOR	-0.201	-0.528	-0.204	-0.534	-0.146	-0.721
INSURE	1.234	4.047	1.227	4.031	0.579	4.147
Log-Likelihood	-488.6	69	-488.78		-486.98	
AIC	1,021.38		1,017.56		1,013.96	

Comparison of Binary Regression Models

- From the *t*-values of the Full Model, one might consider a more parsimonious model by removing statistically insignificant variables.
 - The table shows a "Reduced Model," where age and mental health status variables have been removed.
 - However, twice the change in the log likelihood was only $2 \times (-488.78 (-488.69)) = 0.36.$
 - Comparing this to a chi-square distribution with *df* = 2 degrees of freedom results in a *p*-value= 0.835, indicating that the drop is not statistically significant.
- The table also provides probit model fits.
 - The results are similar to the logit model fits.
 - Examine the sign of the coefficients and their significance.

Chapter 13: Generalized Linear Models

GLM Ingredients

- This extension of the linear model is so widely used that it is known as *the* "generalized linear model," or as the acronym GLM.
- GLM generalizes the linear model in three ways
- 1. Mean as a function of linear predictors
 - Call the linear combination of explanatory variables the *systematic* component, denoted as $\eta_i = \mathbf{x}'_i \beta$
 - The link function relates the mean to the systematic component

$$\eta_i = \mathbf{x}_i' \boldsymbol{\beta} = \mathbf{g}\left(\boldsymbol{\mu}_i\right).$$

- g(.) a smooth, invertible function. The inverse μ_i = g⁻¹(x_i'β), is the mean function.
- Some examples we have seen:
 - $\mathbf{x}'_i \boldsymbol{\beta} = \mu_i$, for (normal) linear regression,
 - $\mathbf{x}'_i \boldsymbol{\beta} = \exp(\mu_i)/(1 + \exp(\mu_i))$, for logistic regression and
 - $\mathbf{x}'_i \boldsymbol{\beta} = \ln(\mu_i)$, for Poisson regression.

GLM Ingredients II

- 2. The GLM extends linear modeling through the use of the *linear exponential family of distributions*
 - Not the exponential distribution it is a generalization.
 - This family includes the normal, Bernoulli and Poisson distributions as special cases.

GLM Ingredients II

- 2. The GLM extends linear modeling through the use of the *linear exponential family of distributions*
 - Not the exponential distribution it is a generalization.
 - This family includes the normal, Bernoulli and Poisson distributions as special cases.
- 3. GLM modeling is robust to the choice of distributions.
 - The linear model sampling assumptions focused on:
 - the form of the mean function (assumption F1),
 - non-stochastic or exogenous explanatory variables (F2),
 - constant variance (F3) and
 - independence among observations (F4).
 - GLM models maintain assumptions F2 and F4
 - GLM models extend F1 through the link function.
 - To extend F3, the variance depends on the choice of distributions

Variance as a Function of the Mean

Table: Variance Functions for Selected Distributions

Distribution	Variance Function $v(\mu)$
Normal	1
Bernoulli	$\mu(1-\mu)$
Poisson	μ
Gamma	μ^2
Inverse Gaussian	μ^3

• The choice of the variance function drives many inference properties, not the choice of the distribution.

GLM Model

• Definition. The distribution of the linear exponential family is

$$f(y; \theta, \phi) = \exp\left(\frac{y\theta - b(\theta)}{\phi} + S(y, \phi)\right).$$

- y is a dependent variable and θ is the parameter of interest.
- ϕ is a scale parameter, often assumed known.
- $b(\theta)$ depends only on the parameter θ , not the dependent variable.
- $S(y, \phi)$ is a function of y and the scale parameter, not the parameter θ .

GLM Model

• Definition. The distribution of the linear exponential family is

$$f(y; \theta, \phi) = \exp\left(\frac{y\theta - b(\theta)}{\phi} + S(y, \phi)\right).$$

- y is a dependent variable and θ is the parameter of interest.
- ϕ is a scale parameter, often assumed known.
- $b(\theta)$ depends only on the parameter θ , not the dependent variable.
- $S(y, \phi)$ is a function of y and the scale parameter, not the parameter θ .

• Example: Normal distribution - use $\theta = \mu$ and $\phi = \sigma^2$,

$$\begin{aligned} \mathbf{f}(y;\boldsymbol{\mu},\boldsymbol{\sigma}^2) &= \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-\boldsymbol{\mu})^2}{2\sigma^2}\right) \\ &= \exp\left(\frac{(y\boldsymbol{\mu}-\boldsymbol{\mu}^2/2)}{\sigma^2}-\frac{y^2}{2\sigma^2}-\frac{1}{2}\ln\left(2\pi\sigma^2\right)\right). \end{aligned}$$

• Also $b(\theta) = \theta^2/2$ and $S(y, \phi) = -y^2/(2\phi) - \ln(2\pi\sigma^2)/2$.

Table of Linear Exponential Family of Distributions

Table: Selected Distributions of the	One-Parameter E	Exponential Family
--------------------------------------	-----------------	--------------------

	Para-	Density or			
Distribution	meters	Mass Function	Components	Еy	Var y
General	θ, φ	$\exp\left(\frac{y\theta-b(\theta)}{\phi}+S(y,\phi)\right)$	$\theta, \phi, b(\theta), S(y, \phi)$	$b'(\theta)$	$b''(\theta)\phi$
Normal	μ, σ^2	$\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$	$\mu, \sigma^2, \frac{\theta^2}{2}, -\left(\frac{y^2}{2\phi} + \frac{\ln(2\pi\phi)}{2}\right)$	$ heta=\mu$	$\phi = \sigma^2$
Binomal	π	$\binom{n}{y}\pi^{y}(1-\pi)^{n-y}$	$\ln\left(\frac{\pi}{1-\pi}\right), 1, n\ln(1+e^{\theta}),$	$n \frac{e^{\theta}}{1+e^{\theta}}$	$n \frac{e^{\theta}}{(1+e^{\theta})^2}$
			$\ln \binom{n}{y}$	$= n\pi$	$= n\pi(1-\pi)$
Poisson	λ	$\frac{\lambda^{y}}{y!} \exp(-\lambda)$	$\ln \lambda, 1, e^{\theta}, -\ln(y!)$	$e^{ heta} = \lambda$	$e^{ heta} = \lambda$
Gamma	α, β	$\frac{\frac{\lambda^{y}}{y!}\exp(-\lambda)}{\frac{\beta^{\alpha}}{\Gamma(\alpha)}y^{\alpha-1}\exp(-y\beta)}$	$-\frac{\beta}{\alpha}, \frac{1}{\alpha}, -\ln(-\theta), -\phi^{-1}\ln\phi$	$-\frac{1}{\theta} = \frac{\alpha}{\beta}$	$\frac{\phi}{\theta^2} = \frac{\alpha}{\beta^2}$
			$-\ln (\Gamma(\phi^{-1})) + (\phi^{-1} - 1) \ln y$		
Inverse	μ, λ	$\sqrt{\frac{\lambda}{2\pi y^3}} \exp\left(-\frac{\lambda(y-\mu)^2}{2\mu^2 y}\right)$	$-\mu^2/2, 1/\lambda, -\sqrt{-2\theta},$	$(-2\theta)^{-1/2}$	$\phi(-2\theta)^{-3/2}$
Gaussian			$\theta/(\phi y) - 0.5 \ln(\phi 2\pi y^3)$	$=\mu$	$=\frac{\mu^3}{\lambda}$

Link Functions

· In the linear exponential family, we can show that

 $\mu_i = \operatorname{E} y_i = b'(\theta_i)$ and $\operatorname{Var} y_i = \phi_i b''(\theta_i)$.

- Both θ and φ may vary by subject i
 - Because the θ determines the mean, we think of it as the mean, or location, parameter
 - Thus, think of ϕ as the scale, or dispersion, parameter
 - Typically, when the scale parameter varies by *i*, it is according to $\phi_i = \phi/w_i$, that is, a constant divided by a known weight w_i .
- Recall the link function

$$\eta_i = \mathbf{x}'_i \boldsymbol{\beta} = g(\boldsymbol{\mu}_i) = g(b'(\boldsymbol{\theta}_i)).$$

- The link function allows us to introduce explanatory variable to determine the mean.
- The model parameters are β and ϕ .

Chapter 11 - Binary Dependent	Logistic and probit regression models	Inference for logistic and probit	Example: Medical Expenditures	Chapter 13 - Introduction	GLM Model	Estimation	Application: Medical Expenditures	Tweedie Dis
Binary Dependent	00000	regitiesion models	0000	0000	00	000	00000	00

Choosing the Link Function

- The systematic component, $\eta_i = \mathbf{x}'_i \boldsymbol{\beta}$, ranges over $(-\infty,\infty)$.
- Would like the range for g(µ) to be comparable
 - Example, use the log-link, $\mathbf{x}'_i \boldsymbol{\beta} = \ln(\mu_i)$, for Poisson regression.

1 - pendent	Logistic and probit regression models	Inference for logistic and probit	Example: Medical Expenditures	Chapter 13 - Introduction	GLM Model	Estimation	Application: Medical Expenditures	Tweedie Dis
romovili,		regnession models	0000	0000	00	000	00000	00

Choosing the Link Function

- The systematic component, $\eta_i = \mathbf{x}'_i \boldsymbol{\beta}$, ranges over $(-\infty,\infty)$.
- Would like the range for g(µ) to be comparable
 - Example, use the log-link, $\mathbf{x}'_i \boldsymbol{\beta} = \ln(\mu_i)$, for Poisson regression.
- Bernoulli distribution examples
 - Logit: $g(\mu) = \text{logit}(\mu) = \ln(\mu/(1-\mu))$.
 - Probit: $g(\mu) = \Phi^{-1}(\mu)$.
 - Complementary log-log: $g(\mu) = \ln(-\ln(1-\mu))$.

Logistic and probit regression models	Inference for logistic and probit	Example: Medical Expenditures	Chapter 13 - Introduction	GLM Model	Estimation	Application: N
	Population models	0 0000	0000	00	000	00000

Choosing the Link Function

- The systematic component, $\eta_i = \mathbf{x}'_i \boldsymbol{\beta}$, ranges over $(-\infty,\infty)$.
- Would like the range for g(µ) to be comparable
 - Example, use the log-link, $\mathbf{x}'_i \boldsymbol{\beta} = \ln(\mu_i)$, for Poisson regression.
- Bernoulli distribution examples
 - Logit: $g(\mu) = \text{logit}(\mu) = \ln(\mu/(1-\mu))$.
 - Probit: $g(\mu) = \Phi^{-1}(\mu)$.
 - Complementary log-log: $g(\mu) = \ln(-\ln(1-\mu))$.
- Another choice principle: The canonical link
 - The choice of g that is the inverse of $b'(\theta)$ is called the canonical link.
 - The systematic component equals the parameter of interest $(\eta = \theta)$.

Distribution	Mean function $b'(\theta)$	Canonical link $g(\mu)$
Normal	θ	μ
Bernoulli	$e^{\theta}/(1+e^{\theta})$	$logit(\mu)$
Poisson	e^{θ}	$\ln \mu$
Gamma	$-1/\theta$	$1/\mu$
Inverse Gaussian	$(-2\theta)^{-1/2}$	$1/\mu^{2}$

Table: Mean Functions and Canonical Links for Selected Distributions

Maximum Likelihood Estimation

- The usual method of parameter estimation is maximum likelihood.
- · For example, the log-likelihood is

$$\ln \mathbf{f}(\mathbf{y}) = \sum_{i=1}^{n} \left\{ \frac{y_i \theta_i - b(\theta_i)}{\phi_i} + S(y_i, \phi_i) \right\}.$$

- With a canonical link, $\theta_i = \eta_i = \mathbf{x}'_i \boldsymbol{\beta}$.
- See the text for more information on this topic ...

Overdispersion

- For some distributions, such as the normal and gamma distributions, we estimate φ after the estimation of β, using maximum likelihood.
- For others, such as the binomial and Poisson, the scale parameter φ is known.
 - Although the scale parameter is theoretically known, the data suggest a different value.
 - We introduce an extra parameter that can be estimated from the data
 - This is known as "quasi-binomial" or "quasi-Poisson".
 - The variance is of the form $\operatorname{Var} y_i = \sigma^2 \phi b''(\theta_i) / w_i$.
 - Can estimate the additional scale parameter σ^2 as a Pearson's chi-square statistic divided by the error degrees of freedom. That is,

$$\widehat{\sigma}^2 = \frac{1}{N-K} \sum_{i=1}^n w_i \frac{\left(y_i - b'(\mathbf{x}'_i \mathbf{b}_{MLE})\right)^2}{\phi b''(\mathbf{x}'_i \mathbf{b}_{MLE})}.$$

Goodness of Fit Statistics

- *R*² is not a useful statistic in nonlinear models, in part because of the analysis of variance decomposition is no longer valid.
 - The Sum of Cross-Products is not zero in non-linear models.

$$\sum_{i} (y_i - \overline{y})^2 = \sum_{i} (y_i - \widehat{y}_i)^2 + \sum_{i} (\widehat{y}_i - \overline{y})^2 + 2 \times \sum_{i} (y_i - \widehat{y}_i) (\widehat{y}_i - \overline{y}).$$

Total SS = Error SS + Regression SS + $2 \times$ Sum of Cross-Products.

- For discrete data, consider reporting Pearson's chi-square statistic (either grouped or individual)
- General information criteria, including *AIC* and *BIC*, (defined in Section 11.9) are regularly cited in GLM studies.

MEPS Data

- There are 157 people with positive inpatient expenditures
- Smooth Empirical Histogram of Positive Inpatient Expenditures. The largest expenditure is omitted.
- The skewed histogram suggests using a gamma distribution.

hapter 11 -	Logistic and probit		Example: Medical	Chapter 13 -	GLM Model	Estimation	Application: Medical	Iweedie D
nary Dependent	regression models	logistic and probit	Expenditures	Introduction			Expenditures	~ ~
006	000	rogession models	8000	0000		000	00000	00
	80	00	0000		00			
	0000							

Median Expenditures by Explanatory Variable - n = 157 with Positive Expends

Category	Variable	Description	Percent	Median
			of data	Expend
	COUNTIP	Number of expenditures (median: 1.0)		
Demography	AGE	Age in years between 18 to 65 (median		
	SEX	1 if female	72.0	5,546
		0 if male	28.0	7,313
Ethnicity	ASIAN	1 if Asian	2.6	4,003
	BLACK	1 if Black	19.8	6,100
	NATIVE	1 if Native	1.9	2,310
	WHITE	Base category	75.6	5,695
Region	NORTHEAST	1 if Northeast	18.5	5,833
	MIDWEST	1 if Midwest	21.7	7,999
	SOUTH	1 if South	40.8	5,595
	WEST	Base category	19.1	4,297
Education	COLLEGE	 if college or higher degree 	23.6	5,611
	HIGHSCHOOL	1 if high school degree	43.3	5,907
	Base category is	lower than high school degree	33.1	5,338
Self-rated	POOR	1 if poor	17.2	10,447
physical	FAIR	1 if fair	10.2	5,228
health	GOOD	1 if good	31.2	5,032
	VGOOD	1 if very good	24.8	5,546
	Base category is	excellent health	16.6	5,277
Self-rated	MPOOR	1 if poor or fair	15.9	6,583
mental health		0 if good to excellent mental health	84.1	5,599
Any activity	ANYLIMIT	1 if any functional/activity limitation	41.4	7,826
limitation		0 if otherwise	58.6	4,746
Income	Base category is	high income	21.7	7,271
compared to	MINCOME	1 if middle income	26.8	5,851
poverty line	LINCOME	1 if low income	16.6	6,909
	NPOOR	1 if near poor	7.0	5,546
	POORNEG	if poor/negative income	28.0	4,097
Insurance	INSURE	1 if covered by public/private health	91.1	5,943
coverage		insurance in any month of 2003		
2		0 if have no health insurance in 2003	8.9	2,668
Total			100.0	5.695

MEPS Data

- Percent of Data
 - The Table shows that the sample is 72% female, almost 76% white and over 91% insured.
 - There are relatively few expenditures by Asians, Native Americans and the uninsured in our sample.
- Median Expenditures by categorical variable
- Potentially important determinants of the amount of medical expenditures
 - gender,
 - a poor self-rating of physical health and
 - income that is poor or negative.

er 11 - Dependent	Logistic and probit regression models	Inference for logistic and probit	Example: Medical Expenditures	Chapter 13 - Introduction	GLM Model	Estimation	Application: Medical Expenditures	Tweedie Di
16	00000	OO OO	0000	0000	88	000	00000	00

Gamma and Inverse Gaussian Regression Models

		Inverse Ga	aussian				
	Full Mo	odel	Reduced	Model	Reduced Model		
	Parameter		Parameter		Parameter		
Effect	Estimate	t-value	Estimate	t-value	Estimate	t-value	
Intercept	6.891	13.080	7.859	17.951	6.544	3.024	
COUNTIP	0.681	6.155	0.672	5.965	1.263	0.989	
AGE	0.021	3.024	0.015	2.439	0.018	0.727	
GENDER	-0.228	-1.263	-0.118	-0.648	0.363	0.482	
ASIAN	-0.506	-1.029					
BLACK	-0.331	-1.656	-0.258	-1.287	-0.321	-0.577	
NATIVE	-1.220	-2.217					
NORTHEAST	-0.372	-1.548	-0.214	-0.890	0.109	0.165	
MIDWEST	0.255	1.062	0.448	1.888	0.399	0.654	
SOUTH	0.010	0.047	0.108	0.516	0.164	0.319	
COLLEGE	-0.413	-1.723	-0.469	-2.108	-0.367	-0.606	
HIGHSCHOOL	-0.155	-0.827	-0.210	-1.138	-0.039	-0.078	
POOR	-0.003	-0.010	0.167	0.706	0.167	0.258	
FAIR	-0.194	-0.641					
GOOD	0.041	0.183					
VGOOD	0.000	0.000					
MNHPOOR	-0.396	-1.634	-0.314	-1.337	-0.378	-0.642	
ANYLIMIT	0.010	0.053	0.052	0.266	0.218	0.287	
MINCOME	0.114	0.522					
LINCOME	0.536	2.148					
NPOOR	0.453	1.243					
POORNEG	-0.078	-0.308	-0.406	-2.129	-0.356	-0.595	
INSURE	0.794	3.068					
Scale	1.409	9.779	1.280	9.854	0.026	17.720	
Log-Likelihood	-1,558	.67	-1,567	.93	-1,669	.02	
AIĈ	3,163	.34	3,163	.86	3,366	.04	

Gamma and Inverse Gaussian Regression Models

- A gamma regression model using a logarithmic link was fit to inpatient expenditures using all explanatory variables.
 - Many variables are not statistically significant.
 - Common in expenditure analysis, where variables help predict the frequency although are not as useful in explaining severity.
 - Collinearity too many variables in a fitted model can lead to statistical insignificance of important variables and even cause signs to be reversed.
- Reduced Model
 - Removed the Asian, Native American and the uninsured variables they account for a small subset of our sample.
 - Used only the POOR variable for self-reported health status and only POORNEG for income, essentially reducing these categorical variables to binary variables.
 - *AIC* is about the same as the full model a reasonable alternative.
 - The variables COUNTIP (inpatient count), AGE, COLLEGE and POORNEG, are statistically significant variables.
- Also fit of an inverse gaussian model with a log link.
 - AIC does not fit nearly as well as the gamma regression model.
 - All variables are statistically insignificant difficult to interpret.

Tweedie Distribution

- The Tweedie distribution is defined as a Poisson sum of gamma random variables
 - Suppose that *N* has a Poisson distribution with mean λ, representing the number of claims.
 - Let y_j be i.i.d., independent of N
 - Each y_j has a gamma distribution with parameters α and β , representing the amount of a claim.
 - $S_N = y_1 + \ldots + y_N$ is Poisson sum of gammas.
- The Tweedie distribution
 - Discrete component the probability of zero claims is

$$\Pr(S_N=0) = \Pr(N=0) = e^{-\lambda}.$$

Continuous component - for y > 0, the density is

$$\mathbf{f}_{S}(\mathbf{y}) = \sum_{n=1}^{\infty} e^{-\lambda} \frac{\lambda^{n}}{n!} \frac{\beta^{n\alpha}}{\Gamma(n\alpha)} y^{n\alpha-1} e^{-y\beta}.$$

Tweedie Distribution and GLM

• We can define three parameters μ, ϕ, p through the relations

$$\lambda = \frac{\mu^{2-p}}{\phi(2-p)}, \quad \alpha = \frac{2-p}{p-1} \quad \text{and} \quad \frac{1}{\beta} = \phi(p-1)\mu^{p-1}.$$

- With this new parameterization, it can be readily shown that the Tweedie distribution is a member of the linear exponential family.
- Easy calculations show that

$$E S_N = \mu$$
 and $Var S_N = \phi \mu^p$,

where 1 .

- Thus, the Tweedie can be used in a GLM with μ as a function of the systematic component η .
- Examining variances, the Tweedie distribution can also be viewed as a choice that is intermediate between the Poisson (p = 1) and the gamma (p = 2) distributions.