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Example. MEPS Hospital Utilization
• Consider an extensive database from the Medical Expenditure

Panel Survey (MEPS) on hospitalization utilization

Table: Hospitalization by Gender

Male Female
Not hospitalized y = 0 902 (95.3%) 941 (89.3%)
Hospitalized y = 1 44 ( 4.7%) 113 (10.7%)
Total 946 1,054

yi =

{
1 ith person was hospitalized during the sample period
0 otherwise .

• Like linear regression techniques, we are interested in using
characteristics of a person, such as their age, sex, education,
income, prior health status and so forth, to help explain the
dependent variable y.

• However, now the dependent variable is discrete and not even
approximately normally distributed.
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Linear Probability Model

• yi has a Bernoulli distribution
• The probability that the response equals 1 by πi = Pr(yi = 1).
• The mean response is E yi = 0×Pr(yi = 0)+1×Pr(yi = 1) = πi.
• Thus, the variance is related to the mean through the expression

Var yi = πi(1−πi).

• The linear probability model is

yi = x′iβ + εi,

• Assuming E εi = 0, we have that E yi = x′iβ = πi
• Var yi = x′iβ (1−x′iβ ).
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Drawbacks of the Linear Probability Model

• The expected response is a probability and thus must vary
between 0 and 1. However, the linear combination, x′iβ , can vary
between negative and positive infinity. This mismatch implies, for
example, that fitted values may be unreasonable.

• Linear models assume homoscedasticity (constant variance) yet
the variance of the response depends on the mean that varies
over observations. The problem of varying variability is known as
heteroscedasticity.

• The response must be either a 0 or 1 although the regression
models typically regards distribution of the error term as
continuous. This mismatch implies, for example, that the usual
residual analysis in regression modeling is meaningless.

6 / 43



Chapter 11 -
Binary Dependent
Variables

Logistic and probit
regression models

Inference for
logistic and probit
regression models

Example: Medical
Expenditures

Chapter 13 -
Introduction

GLM Model Estimation Application: Medical
Expenditures

Tweedie Distribution

Drawbacks of the Linear Probability Model

• The expected response is a probability and thus must vary
between 0 and 1. However, the linear combination, x′iβ , can vary
between negative and positive infinity. This mismatch implies, for
example, that fitted values may be unreasonable.

• Linear models assume homoscedasticity (constant variance) yet
the variance of the response depends on the mean that varies
over observations. The problem of varying variability is known as
heteroscedasticity.

• The response must be either a 0 or 1 although the regression
models typically regards distribution of the error term as
continuous. This mismatch implies, for example, that the usual
residual analysis in regression modeling is meaningless.

6 / 43



Chapter 11 -
Binary Dependent
Variables

Logistic and probit
regression models

Inference for
logistic and probit
regression models

Example: Medical
Expenditures

Chapter 13 -
Introduction

GLM Model Estimation Application: Medical
Expenditures

Tweedie Distribution

Drawbacks of the Linear Probability Model

• The expected response is a probability and thus must vary
between 0 and 1. However, the linear combination, x′iβ , can vary
between negative and positive infinity. This mismatch implies, for
example, that fitted values may be unreasonable.

• Linear models assume homoscedasticity (constant variance) yet
the variance of the response depends on the mean that varies
over observations. The problem of varying variability is known as
heteroscedasticity.

• The response must be either a 0 or 1 although the regression
models typically regards distribution of the error term as
continuous. This mismatch implies, for example, that the usual
residual analysis in regression modeling is meaningless.

6 / 43



Chapter 11 -
Binary Dependent
Variables

Logistic and probit
regression models

Inference for
logistic and probit
regression models

Example: Medical
Expenditures

Chapter 13 -
Introduction

GLM Model Estimation Application: Medical
Expenditures

Tweedie Distribution

Using nonlinear functions of explanatory variables

• The linear combination of explanatory variables, x′iβ , is
sometimes known as the “systematic component.”

• We consider a function of explanatory variables,
πi = π(x′iβ ) = Pr(yi = 1|xi).

• We focus on two special cases of the function π(.):
• π(z) = 1

1+exp(−z) =
ez

1+ez , the logit case, and
• π(z) = Φ(z), the probit case.
• Φ(.) is the standard normal distribution function.

• Note that π(z) = z yields the linear probability model.
• The inverse of the function, π−1, is linear in the explanatory

variables, that is, π−1(πi) = x′iβ .
• The logit and probit are really close.
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Comparison of Logit and Probit Distribution Functions
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Threshold interpretation

• Both the logit and probit are special cases.
• To this end, suppose that there exists an underlying linear model,

y∗i = x′iβ + ε∗i .
• We do not observe the response y∗i yet interpret it to be the

“propensity” to possess a characteristic.
• For example, we might think about the speed of a horse as a

measure of its propensity to win a race.

• Under the threshold interpretation, we do not observe the
propensity but we do observe when the propensity crosses a
threshold.

• It is customary to assume that this threshold is 0, for simplicity.
• We observe

yi =

{
0 y∗i ≤ 0
1 y∗i > 0

.
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Threshold interpretation - Logit Case

• Assume a logit distribution function for the disturbances, so that

Pr(ε∗i ≤ a) =
1

1+ exp(−a)
.

• Because the logit distribution is symmetric about zero, we have
that Pr(ε∗i ≤ a) = Pr(−ε∗i ≤ a).

πi = Pr(yi = 1|xi) = Pr(y∗i > 0) = Pr(ε∗i ≤ x′iβ )

=
1

1+ exp(−x′iβ )
= π(x′iβ ).

• This establishes the threshold interpretation for the logit case.
• The development for the probit case is similar, and is omitted.
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Random utility interpretation
• Think of an individual as selecting between two choices.

• Preferences among choices are indexed by an unobserved utility
function

• Individuals select the choice that provides the greater utility.
• For the ith subject, we use the notation ui for this utility.

• Choice 1: Ui1 = ui(Vi1 + εi1)
• Choice 2: Ui2 = ui(Vi2 + εi2)
• Utility = function of an underlying value plus random noise.

• Choice j = 1 means
• Ui1 > Ui2
• yi = 1

• Assuming that ui is a strictly increasing function, we have

Pr(yi = 1) = Pr(Ui2 < Ui1) = Pr(ui(Vi2 + εi2)< ui(Vi1 + εi1))

= Pr(εi2 − εi1 < Vi1 −Vi2).

• Assume that Vi2 = 0 and Vi1 = x′iβ .
• We may take the difference in the errors, εi2 − εi1, to be normal or

logistic, corresponding to the probit and logit cases, respectively.
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Logistic regression

• Logit case - permits closed-form expressions, unlike the probit
(normal distribution function).

• Logistic regression is another phrase used to describe the logit
case.

• Using p = π(z), the inverse of π can be calculated as
z = π−1(p) = ln(p/(1−p)).

• To simplify future presentations, we define

logit(π) = ln
(

π

1−π

)
to be the logit function.

• With logistic regression model, we represent the linear
combination of explanatory variables as the logit of the
probability, that is, x′iβ = logit(πi).
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Odds interpretation
• When the response y is binary, knowing only the probability p

summarizes the distribution.
• In some applications, a simple transformation of p has an important

interpretation.
• An important transformation: the odds, given by p/(1−p).
• For example, suppose that y indicates whether or not a horse wins a

race, that is, y = 1 if the horse wins and y = 0 if the horse does not.
• Interpret p to be the probability of the horse winning the race
• As an example, suppose that p = 0.25. Then, the odds of the horse

winning the race is 0.25/(1−0.25) = 0.3333.

• Odds have a useful interpretation from a betting standpoint.
• Suppose that we are playing a fair game and that we place a bet of

$1 with odds of one to three.
• If the horse wins, then we get our $1 back plus winnings of $3.
• If the horse loses, then we lose our bet of $1.

• The logit is the logarithmic odds function, also known as the log
odds .
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Logistic regression parameter interpretation
• Assume that jth explanatory variable, xij, is either 0 or 1.
• With the notation xi = (xi1, ...,xij, . . . ,xiK)

′, we may interpret

βj = (xi1, ...,1, . . . ,xiK)
′
β − (xi1, ...,0, . . . ,xiK)

′
β

= ln
(

Pr(yi = 1|xij = 1)
1−Pr(yi = 1|xij = 1)

)
− ln

(
Pr(yi = 1|xij = 0)

1−Pr(yi = 1|xij = 0)

)
• Exponentiating, we have the odds ratio

eβj =
Pr(yi = 1|xij = 1)/(1−Pr(yi = 1|xij = 1))
Pr(yi = 1|xij = 0)/(1−Pr(yi = 1|xij = 0))

.

• The numerator of this expression is the odds when xij = 1, whereas
the denominator is the odds when xij = 0.

• Thus, we can say that the odds when xij = 1 are exp(βj) times as
large as the odds when xij = 0.

• To illustrate, if βj = 0.693, then exp(βj) = 2.
• From this, we say that the odds (for y = 1) are twice as great for xij = 1

as xij = 0.
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Logistic regression parameter interpretation

• Similarly, assuming that jth explanatory variable is continuous
(differentiable), we have

βj =
∂

∂xij
x′β =

∂

∂xij
ln
(

Pr(yi = 1|xij)

1−Pr(yi = 1|xij)

)

=

∂

∂xij
Pr(yi = 1|xij)/(1−Pr(yi = 1|xij))

Pr(yi = 1|xij)/(1−Pr(yi = 1|xij))
.

• Thus, we may interpret βj as the proportional change in the odds,
known as an elasticity in economics.
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Likelihoods for maximum likelihood estimation
• The customary method of estimation is maximum likelihood.
• To provide intuition, we outline the ideas in the context of binary

dependent variable regression models.
• The likelihood is the observed value of the density or mass function.
• For a single observation, the likelihood is{

1−πi if yi = 0
πi if yi = 1 .

• The objective of maximum likelihood estimation is to find the
parameter values that produce the largest likelihood.

• Finding the maximum of the logarithmic function yields the same
solution as finding the maximum of the corresponding function.

• Because it is generally computationally simpler, we consider the
logarithmic (log-) likelihood, written as{

ln(1−πi) if yi = 0
lnπi if yi = 1

.
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Log likelihood
• More compactly, the log-likelihood of a single observation is

yi lnπ(x′iβ )+(1− yi) ln
(
1−π(x′iβ )

)
,

where πi = π(x′iβ ).
• Assuming independence, the log-likelihood of the data set is

L(β ) =
n

∑
i=1

{
yi lnπ(x′iβ )+(1− yi) ln

(
1−π(x′iβ )

)}
.

• The (log) likelihood is viewed as a function of the parameters, with the
data held fixed.

• In contrast, the joint probability mass (density) function is viewed as a
function of the realized data, with the parameters held fixed.

• The method of maximum likelihood means finding the values of β

that maximize the log-likelihood.
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Parameter estimation
• The customary method of finding the maximum is taking partial

derivatives with respect to the parameters of interest and finding
roots of the these equations.

• In this case, taking partial derivatives with respect to β yields the
score equations

∂

∂β
L(β ) =

n

∑
i=1

xi
(
yi −π(x′iβ )

) π ′(x′iβ )
π(x′iβ )(1−π(x′iβ ))

= 0.

• The solution of these equations, say bMLE, is the maximum likelihood
estimator.

• To illustrate, for the logit case, the score equations reduce to

∂

∂β
L(β ) =

n

∑
i=1

xi
(
yi −π(x′iβ )

)
= 0.

where π(z) = 1/(1+ exp(−z)).
• When the model contains an intercept term, we can write the first

row of this expression as ∑
n
i=1 (yi −π(x′ibMLE)) = 0, so the sum of

observed values equals the sum of fitted values.
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Inference – Regression coefficient standard errors
• An estimator of the asymptotic variance of β may be calculated

taking partial derivatives of the score equations.

I(β ) =
∂ 2

∂β∂β
′ L(β )

is the information matrix.
• To illustrate, using the logit function, straightforward calculations

show that the information matrix is

I(β ) =
n

∑
i=1

xix′iπ(x
′
iβ )(1−π(x′iβ )).

• The square root of the (j+1)st diagonal element of this matrix
evaluated at β = bMLE yields the standard error for bj,MLE, denoted as
se(bj,MLE).
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Inference – Model fit
• To assess the overall model fit, it is customary to cite likelihood ratio

test statistics in nonlinear regression models.
• For example, to test the overall model adequacy H0 : β = 0, we use

the statistic
LRT = 2× (L(bMLE)−L0),

where L0 is the maximized log-likelihood with only an intercept term.
• Under the null hypothesis H0, this statistic has a chi-square distribution

with K degrees of freedom.
• Another measure of model fit is the so-called max− scaled R2,

defined as R2
ms = R2/R2

max, where

R2 = 1−
(

exp(L0/N)

exp(L(bMLE)/N)

)
and R2

max = 1− exp(L0/N)2. Here, L0/N represents the average value
of this log-likelihood.
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Data
• Data from the Medical Expenditure Panel Survey (MEPS),

conducted by the U.S. Agency of Health Research and Quality
(AHRQ).

• A probability survey that provides nationally representative estimates
of health care use, expenditures, sources of payment, and insurance
coverage for the U.S. civilian population.

• Collects detailed information on individuals of each medical care
episode by type of services including

• physician office visits,
• hospital emergency room visits,
• hospital outpatient visits,
• hospital inpatient stays,
• all other medical provider visits, and
• use of prescribed medicines.

• This detailed information allows one to develop models of health care
utilization to predict future expenditures.

• We consider MEPS data from the first panel of 2003 and take a
random sample of n = 2,000 individuals between ages 18 and 65.
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Dependent Variable

• Our dependent variable is an indicator of positive expenditures
for inpatient admissions.

• For MEPS, inpatient admissions include persons who were
admitted to a hospital and stayed overnight.

• In contrast, outpatient events include hospital outpatient
department visits, office-based provider visits and emergency
room visits excluding dental services.

• Hospital stays with the same date of admission and discharge,
known as “zero-night stays,” were included in outpatient counts and
expenditures.

• Payments associated with emergency room visits that immediately
preceded an inpatient stay were included in the inpatient
expenditures.

• Prescribed medicines that can be linked to hospital admissions
were included in inpatient expenditures, not in outpatient utilization.
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Percent of Positive Expenditures by Explanatory Variable

Category Variable Description Percent Percent
of data Positive

Expend
Demography AGE Age in years between 18 to 65 (mean: 39.0)

GENDER 1 if female 52.7 10.7
0 if male 47.3 4.7

Ethnicity ASIAN 1 if Asian 4.3 4.7
BLACK 1 if Black 14.8 10.5
NATIVE 1 if Native 1.1 13.6
WHITE Reference level 79.9 7.5

Region NORTHEAST 1 if Northeast 14.3 10.1
MIDWEST 1 if Midwest 19.7 8.7
SOUTH 1 if South 38.2 8.4
WEST Reference level 27.9 5.4

Education COLLEGE 1 if college or higher degree 27.2 6.8
HIGHSCHOOL 1 if high school degree 43.3 7.9
Reference level is lower than high school degree 29.5 8.8

Self-rated POOR 1 if poor 3.8 36.0
physical FAIR 1 if fair 9.9 8.1
health GOOD 1 if good 29.9 8.2

VGOOD 1 if very good 31.1 6.3
Reference level is excellent health 25.4 5.1

Self-rated MNHPOOR 1 if poor or fair 7.5 16.8
mental health 0 if good to excellent mental health 92.6 7.1

Any activity ANYLIMIT 1 if any functional/activity limitation 22.3 14.6
limitation 0 if otherwise 77.7 5.9

Income HINCOME 1 if high income 31.6 5.4
compared to MINCOME 1 if middle income 29.9 7.0
poverty line LINCOME 1 if low income 15.8 8.3

NPOOR 1 if near poor 5.8 9.5
Reference level is poor/negative 17.0 13.0

Insurance INSURE 1 if covered by public/private health 77.8 9.2
coverage insurance in any month of 2003

0 if have no health insurance in 2003 22.3 3.1
Total 100.0 7.9
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Comparison of Binary Regression Models
Logistic Probit

Full Model Reduced Model Reduced Model
Parameter Parameter Parameter

Effect Estimate t-ratio Estimate t-ratio Estimate t-ratio
Intercept -4.239 -8.982 -4.278 -10.094 -2.281 -11.432
AGE -0.001 -0.180
GENDER 0.733 3.812 0.732 3.806 0.395 4.178
ASIAN -0.219 -0.411 -0.219 -0.412 -0.108 -0.427
BLACK -0.001 -0.003 0.004 0.019 0.009 0.073
NATIVE 0.610 0.926 0.612 0.930 0.285 0.780
NORTHEAST 0.609 2.112 0.604 2.098 0.281 1.950
MIDWEST 0.524 1.904 0.517 1.883 0.237 1.754
SOUTH 0.339 1.376 0.328 1.342 0.130 1.085
COLLEGE 0.068 0.255 0.070 0.263 0.049 0.362
HIGHSCHOOL 0.004 0.017 0.009 0.041 0.003 0.030
POOR 1.712 4.385 1.652 4.575 0.939 4.805
FAIR 0.136 0.375 0.109 0.306 0.079 0.450
GOOD 0.376 1.429 0.368 1.405 0.182 1.412
VGOOD 0.178 0.667 0.174 0.655 0.094 0.728
MNHPOOR -0.113 -0.369
ANYLIMIT 0.564 2.680 0.545 2.704 0.311 3.022
HINCOME -0.921 -3.101 -0.919 -3.162 -0.470 -3.224
MINCOME -0.609 -2.315 -0.604 -2.317 -0.314 -2.345
LINCOME -0.411 -1.453 -0.408 -1.449 -0.241 -1.633
NPOOR -0.201 -0.528 -0.204 -0.534 -0.146 -0.721
INSURE 1.234 4.047 1.227 4.031 0.579 4.147
Log-Likelihood -488.69 -488.78 -486.98
AIC 1,021.38 1,017.56 1,013.96
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Comparison of Binary Regression Models

• From the t-values of the Full Model, one might consider a more
parsimonious model by removing statistically insignificant
variables.

• The table shows a “Reduced Model,” where age and mental health
status variables have been removed.

• However, twice the change in the log likelihood was only
2× (−488.78− (−488.69)) = 0.36.

• Comparing this to a chi-square distribution with df = 2 degrees of
freedom results in a p-value= 0.835, indicating that the drop is not
statistically significant.

• The table also provides probit model fits.
• The results are similar to the logit model fits.
• Examine the sign of the coefficients and their significance.
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GLM Ingredients

• This extension of the linear model is so widely used that it is
known as the “generalized linear model,” or as the acronym GLM.

• GLM generalizes the linear model in three ways
• 1. Mean as a function of linear predictors

• Call the linear combination of explanatory variables the systematic
component, denoted as ηi = x′iβ

• The link function relates the mean to the systematic component

ηi = x′iβ = g(µi) .

• g(.) a smooth, invertible function. The inverse µi = g−1(x′iβ ), is the
mean function.

• Some examples we have seen:
• x′iβ = µi, for (normal) linear regression,
• x′iβ = exp(µi)/(1+ exp(µi)), for logistic regression and
• x′iβ = ln(µi), for Poisson regression.
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GLM Ingredients II

• 2. The GLM extends linear modeling through the use of the
linear exponential family of distributions

• Not the exponential distribution - it is a generalization.
• This family includes the normal, Bernoulli and Poisson distributions

as special cases.

• 3. GLM modeling is robust to the choice of distributions.
• The linear model sampling assumptions focused on:

• the form of the mean function (assumption F1),
• non-stochastic or exogenous explanatory variables (F2),
• constant variance (F3) and
• independence among observations (F4).

• GLM models maintain assumptions F2 and F4
• GLM models extend F1 through the link function.
• To extend F3, the variance depends on the choice of distributions
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Variance as a Function of the Mean

Table: Variance Functions for Selected Distributions

Distribution Variance Function v(µ)
Normal 1
Bernoulli µ(1−µ)
Poisson µ

Gamma µ2

Inverse Gaussian µ3

• The choice of the variance function drives many inference
properties, not the choice of the distribution.
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Linear Exponential Family of Distributions
• Definition. The distribution of the linear exponential family is

f(y;θ ,φ) = exp
(

yθ −b(θ)
φ

+S (y,φ)
)
.

• y is a dependent variable and θ is the parameter of interest.
• φ is a scale parameter, often assumed known.
• b(θ) depends only on the parameter θ , not the dependent variable.
• S(y,φ) is a function of y and the scale parameter, not the parameter

θ .

• Example: Normal distribution - use θ = µ and φ = σ2,

f(y; µ,σ2) =
1

σ
√

2π
exp

(
− (y−µ)2

2σ2

)
= exp

(
(yµ −µ2/2)

σ2 − y2

2σ2 − 1
2

ln
(
2πσ

2)) .

• Also b(θ) = θ 2/2 and S (y,φ) =−y2/(2φ)− ln
(
2πσ2)/2.
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Table of Linear Exponential Family of Distributions

Table: Selected Distributions of the One-Parameter Exponential Family

Para- Density or
Distribution meters Mass Function Components E y Var y

General θ , φ exp
(

yθ−b(θ)
φ

+S (y,φ)
)

θ , φ ,b(θ),S(y,φ) b′(θ) b′′(θ)φ

Normal µ,σ2 1
σ
√

2π
exp

(
− (y−µ)2

2σ2

)
µ,σ2 , θ 2

2 ,−
(

y2

2φ
+ ln(2πφ)

2

)
θ = µ φ = σ2

Binomal π
(n

y

)
πy(1−π)n−y ln

(
π

1−π

)
,1,n ln(1+ eθ ), n eθ

1+eθ
n eθ

(1+eθ )2

ln
(n

y

)
= nπ = nπ(1−π)

Poisson λ
λ y

y! exp(−λ ) lnλ ,1,eθ ,− ln(y!) eθ = λ eθ = λ

Gamma α,β β α

Γ(α) yα−1 exp(−yβ ) − β

α
, 1

α
,− ln(−θ),−φ−1 lnφ − 1

θ
= α

β

φ

θ 2 = α

β 2

− ln
(
Γ(φ−1)

)
+(φ−1 −1) lny

Inverse µ,λ
√

λ

2πy3 exp
(
− λ (y−µ)2

2µ2y

)
−µ2/2,1/λ ,−

√
−2θ , (−2θ)−1/2

φ(−2θ)−3/2

Gaussian θ/(φy)−0.5ln(φ2πy3) = µ = µ3

λ
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Link Functions
• In the linear exponential family, we can show that

µi = E yi = b′(θ i) and Var yi = φib′′(θ i).
• Both θ and φ may vary by subject i

• Because the θ determines the mean, we think of it as the mean, or
location, parameter

• Thus, think of φ as the scale, or dispersion, parameter
• Typically, when the scale parameter varies by i, it is according to

φi = φ/wi, that is, a constant divided by a known weight wi.
• Recall the link function

ηi = x′iβ = g(µi) = g(b′(θi)).

• The link function allows us to introduce explanatory variable to
determine the mean.

• The model parameters are β and φ .
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Choosing the Link Function
• The systematic component, ηi = x′iβ , ranges over (−∞,∞).
• Would like the range for g(µ) to be comparable

• Example, use the log-link, x′iβ = ln(µi), for Poisson regression.

• Bernoulli distribution examples
• Logit: g(µ) = logit(µ) = ln(µ/(1−µ)) .
• Probit: g(µ) = Φ−1(µ).
• Complementary log-log: g(µ) = ln(− ln(1−µ)).

• Another choice principle: The canonical link
• The choice of g that is the inverse of b′(θ) is called the canonical link.
• The systematic component equals the parameter of interest (η = θ ).

Table: Mean Functions and Canonical Links for Selected Distributions

Distribution Mean function b′(θ) Canonical link g(µ)
Normal θ µ

Bernoulli eθ/(1+ eθ ) logit(µ)
Poisson eθ ln µ

Gamma −1/θ 1/µ

Inverse Gaussian (−2θ)−1/2 1/µ2
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Maximum Likelihood Estimation
• The usual method of parameter estimation is maximum likelihood.
• For example, the log-likelihood is

ln f(y) =
n

∑
i=1

{
yiθi −b(θi)

φi
+S(yi,φi)

}
.

• With a canonical link, θi = ηi = x′iβ .
• See the text for more information on this topic ...
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Overdispersion
• For some distributions, such as the normal and gamma

distributions, we estimate φ after the estimation of β , using
maximum likelihood.

• For others, such as the binomial and Poisson, the scale
parameter φ is known.

• Although the scale parameter is theoretically known, the data
suggest a different value.

• We introduce an extra parameter that can be estimated from the
data

• This is known as “quasi-binomial” or “quasi-Poisson”.
• The variance is of the form Var yi = σ2φb′′(θi)/wi.
• Can estimate the additional scale parameter σ2 as a Pearson’s

chi-square statistic divided by the error degrees of freedom. That
is,

σ̂
2 =

1
N −K

n

∑
i=1

wi

(
yi −b′(x′ibMLE)

)2

φb′′(x′ibMLE)
.
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Goodness of Fit Statistics
• R2 is not a useful statistic in nonlinear models, in part because of

the analysis of variance decomposition is no longer valid.
• The Sum of Cross-Products is not zero in non-linear models.

∑
i
(yi − y)2 = ∑

i
(yi − ŷi)

2 +∑
i
(ŷi − y)2 +2×∑

i
(yi − ŷi)(ŷi − y) .

Total SS = Error SS + Regression SS + 2 × Sum of Cross-Products.
• For discrete data, consider reporting Pearson’s chi-square statistic

(either grouped or individual)
• General information criteria, including AIC and BIC, (defined in

Section 11.9) are regularly cited in GLM studies.
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MEPS Data
• There are 157 people with positive inpatient expenditures
• Smooth Empirical Histogram of Positive Inpatient Expenditures.

The largest expenditure is omitted.
• The skewed histogram suggests using a gamma distribution.
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Median Expenditures by Explanatory Variable - n = 157 with Positive Expends
Category Variable Description Percent Median

of data Expend
COUNTIP Number of expenditures (median: 1.0)

Demography AGE Age in years between 18 to 65 (median: 41.0)
SEX 1 if female 72.0 5,546

0 if male 28.0 7,313
Ethnicity ASIAN 1 if Asian 2.6 4,003

BLACK 1 if Black 19.8 6,100
NATIVE 1 if Native 1.9 2,310
WHITE Base category 75.6 5,695

Region NORTHEAST 1 if Northeast 18.5 5,833
MIDWEST 1 if Midwest 21.7 7,999
SOUTH 1 if South 40.8 5,595
WEST Base category 19.1 4,297

Education COLLEGE 1 if college or higher degree 23.6 5,611
HIGHSCHOOL 1 if high school degree 43.3 5,907
Base category is lower than high school degree 33.1 5,338

Self-rated POOR 1 if poor 17.2 10,447
physical FAIR 1 if fair 10.2 5,228
health GOOD 1 if good 31.2 5,032

VGOOD 1 if very good 24.8 5,546
Base category is excellent health 16.6 5,277

Self-rated MPOOR 1 if poor or fair 15.9 6,583
mental health 0 if good to excellent mental health 84.1 5,599

Any activity ANYLIMIT 1 if any functional/activity limitation 41.4 7,826
limitation 0 if otherwise 58.6 4,746

Income Base category is high income 21.7 7,271
compared to MINCOME 1 if middle income 26.8 5,851
poverty line LINCOME 1 if low income 16.6 6,909

NPOOR 1 if near poor 7.0 5,546
POORNEG if poor/negative income 28.0 4,097

Insurance INSURE 1 if covered by public/private health 91.1 5,943
coverage insurance in any month of 2003

0 if have no health insurance in 2003 8.9 2,668
Total 100.0 5,695
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MEPS Data

• Percent of Data
• The Table shows that the sample is 72% female, almost 76% white

and over 91% insured.
• There are relatively few expenditures by Asians, Native Americans

and the uninsured in our sample.
• Median Expenditures by categorical variable
• Potentially important determinants of the amount of medical

expenditures
• gender,
• a poor self-rating of physical health and
• income that is poor or negative.
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Gamma and Inverse Gaussian Regression Models
Gamma Inverse Gaussian

Full Model Reduced Model Reduced Model
Parameter Parameter Parameter

Effect Estimate t-value Estimate t-value Estimate t-value
Intercept 6.891 13.080 7.859 17.951 6.544 3.024
COUNTIP 0.681 6.155 0.672 5.965 1.263 0.989
AGE 0.021 3.024 0.015 2.439 0.018 0.727
GENDER -0.228 -1.263 -0.118 -0.648 0.363 0.482
ASIAN -0.506 -1.029
BLACK -0.331 -1.656 -0.258 -1.287 -0.321 -0.577
NATIVE -1.220 -2.217
NORTHEAST -0.372 -1.548 -0.214 -0.890 0.109 0.165
MIDWEST 0.255 1.062 0.448 1.888 0.399 0.654
SOUTH 0.010 0.047 0.108 0.516 0.164 0.319
COLLEGE -0.413 -1.723 -0.469 -2.108 -0.367 -0.606
HIGHSCHOOL -0.155 -0.827 -0.210 -1.138 -0.039 -0.078
POOR -0.003 -0.010 0.167 0.706 0.167 0.258
FAIR -0.194 -0.641
GOOD 0.041 0.183
VGOOD 0.000 0.000
MNHPOOR -0.396 -1.634 -0.314 -1.337 -0.378 -0.642
ANYLIMIT 0.010 0.053 0.052 0.266 0.218 0.287
MINCOME 0.114 0.522
LINCOME 0.536 2.148
NPOOR 0.453 1.243
POORNEG -0.078 -0.308 -0.406 -2.129 -0.356 -0.595
INSURE 0.794 3.068
Scale 1.409 9.779 1.280 9.854 0.026 17.720
Log-Likelihood -1,558.67 -1,567.93 -1,669.02
AIC 3,163.34 3,163.86 3,366.04
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Gamma and Inverse Gaussian Regression Models
• A gamma regression model using a logarithmic link was fit to

inpatient expenditures using all explanatory variables.
• Many variables are not statistically significant.
• Common in expenditure analysis, where variables help predict the

frequency although are not as useful in explaining severity.
• Collinearity - too many variables in a fitted model can lead to

statistical insignificance of important variables and even cause signs
to be reversed.

• Reduced Model
• Removed the Asian, Native American and the uninsured variables -

they account for a small subset of our sample.
• Used only the POOR variable for self-reported health status and only

POORNEG for income, essentially reducing these categorical
variables to binary variables.

• AIC is about the same as the full model - a reasonable alternative.
• The variables COUNTIP (inpatient count), AGE, COLLEGE and

POORNEG, are statistically significant variables.
• Also fit of an inverse gaussian model with a log link.

• AIC - does not fit nearly as well as the gamma regression model.
• All variables are statistically insignificant - difficult to interpret.
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Tweedie Distribution
• The Tweedie distribution is defined as a Poisson sum of gamma

random variables
• Suppose that N has a Poisson distribution with mean λ ,

representing the number of claims.
• Let yj be i.i.d., independent of N
• Each yj has a gamma distribution with parameters α and β ,

representing the amount of a claim.
• SN = y1 + . . .+ yN is Poisson sum of gammas.

• The Tweedie distribution
• Discrete component - the probability of zero claims is

Pr(SN = 0) = Pr(N = 0) = e−λ .

• Continuous component - for y > 0, the density is

fS(y) =
∞

∑
n=1

e−λ λ n

n!
β nα

Γ(nα)
ynα−1e−yβ .
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Tweedie Distribution and GLM
• We can define three parameters µ,φ ,p through the relations

λ =
µ2−p

φ(2−p)
, α =

2−p
p−1

and
1
β

= φ(p−1)µp−1.

• With this new parameterization, it can be readily shown that the
Tweedie distribution is a member of the linear exponential family.

• Easy calculations show that

E SN = µ and Var SN = φ µ
p,

where 1 < p < 2.
• Thus, the Tweedie can be used in a GLM with µ as a function of

the systematic component η .
• Examining variances, the Tweedie distribution can also be viewed

as a choice that is intermediate between the Poisson (p = 1) and
the gamma (p = 2) distributions.

43 / 43


	Outline
	Main Talk
	Chapter 11 - Binary Dependent Variables
	Logistic and probit regression models
	Using nonlinear functions of explanatory variables
	Threshold interpretation
	Random Utility Interpretation
	Logistic regression

	Inference for logistic and probit regression models
	Parameter estimation
	Inference

	Example: Medical Expenditures
	Data
	Dependent Variable

	Chapter 13 - Introduction
	GLM Model
	Linear Exponential Family of Distributions
	Link Functions

	Estimation
	Application: Medical Expenditures
	Tweedie Distribution


