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Basic Terminology

▶ Claim: indemnification upon the occurrence of an insured
event.
▶ Loss: Some authors use “claim” and “loss” interchangeably,

others distinguish between the amount suffered by the insured
(loss) and the amount paid by the insurer (claim).

▶ Frequency: how often an insured event occurs, typically within
a policy contract.

▶ Severity: amount or size of each payment for an insured event.



Sampling

▶ For each policy i , the observable responses are:
▶ Ni : number of claims (events).
▶ yij , j = 1, . . . , Ni : amount of each claim (loss).
▶ Si = yi1 + · · · + yiNi : aggregate claim amount.

▶ Depending on data availability, responses may include:
1. Aggregate losses {Si}.
2. Both number and aggregate losses {Ni , Si}.
3. Detailed information about each claim {Ni , yi1, . . . , yiNi }.



Sampling Based Inference
▶ When individual claim data {Ni , yi1, . . . , yiNi } is available:

▶ Use conditional probability:

f(N, y) = f(N) × f(y|N)

where:
▶ f(N) models claim frequency.
▶ f(y|N) models conditional severity.

▶ Can use the same strategy when both the number and
aggregate losses are available

▶ Note: No assumption of independence between frequency and
severity.

▶ Other modeling options:
▶ Latent variables: Affect both frequency and severity.
▶ Copulas: Model non-linear dependencies.



Generalized Linear Model Strategy
▶ We now have two dependent variables. Can use the GLM

strategy for each. Recall:
▶ Our typical situation is to consider n observations where, for

the ith observation, yi represents the insurance outcome, and
xi represents a vector of known rating (explanatory, predictor)
variables.

▶ We choose a distribution that is common to all observations
but allow the mean µi to vary by i (and sometimes other
distribution parameters).

▶ We typically use a known function µi = exp(x′
iβ).

▶ Here, β = (β0, β1, . . . , βk)′ is a vector of k + 1 parameters.
▶ Instead of n unknown means µi , we now have only k + 1

unknown parameters.
▶ We typically estimate the parameters using maximum likelihood.



Pricing Using the Mean
▶ For modeling purposes, let us focus on pricing. Hence, our

main interest is the mean.
▶ You can think about adding loadings for expenses and risk to

this basic quantity to get a price.
▶ This is the basis for personal line products, e.g., homeowners,

auto.
▶ Also provides the foundation for commercial lines (where risk

loading and history/credibility take on a greater role).
▶ For motivation, think about the predictor variables as a single

categorical variable:
▶ Traditionally, rating variables have been categorical variables.
▶ Estimation of the parameters is particularly simple (and thus

easy to explain), sometimes only requiring spreadsheets.



Frequency-Severity Models

Two-Part Models
▶ In a two-part model, one part indicates whether an event

(claim) occurs, and the second part indicates the size of the
event.

▶ Let ri be a binary variable indicating whether or not the i-th
subject has an insurance claim, and yi describes the amount of
the claim.

▶ To estimate a two-part model:
1. Use a binary regression model with ri as the dependent variable

and x1i as the set of explanatory variables. Denote the
corresponding set of regression coefficients as β1.

2. Conditional on ri = 1, specify a regression model with yi as the
dependent variable and x2i as the set of explanatory variables.
The gamma with a logarithmic link is a typical severity model.



Other Frequency-Severity Models

▶ For the second form, we have aggregate counts and severities
{Ni , Si}.

▶ The two-step frequency-severity model procedure:
1. Use a count regression model with Ni as the dependent variable

and x1i as the set of explanatory variables.
2. Conditional on Ni > 0, use a GLM with Si/Ni as the dependent

variable and x2i as the set of explanatory variables.



Tweedie GLMs

▶ The Tweedie distribution is a Poisson sum of gamma random
variables.

▶ It is used to model “pure premiums,” where zeros correspond to
no claims, and the positive part is used for the claim amount.

▶ The Tweedie distribution is a member of the linear exponential
family with mean and variance:

E SN = µ, Var SN = ϕµp

where 1 < p < 2.
▶ With a log-link, we have

µi = exp(x′
i ,T βT ).



Comparing the Tweedie to a Frequency-Severity Model

▶ As an alternative, consider a model composed of frequency and
severity components:
▶ Use a Poisson regression model for frequency:

Ni ∼ Poisson(λi), λi = exp(x′
i,F βF )

▶ Use a gamma regression for severity:

yij ∼ Gamma(α, γi),
α

γi
= E yij = exp(x′

i,SβS)

▶ The aggregate loss, SN,i = yij + · · · + yi,Ni , has mean:

E SN,i = E Ni × E yij
= exp(x′

i ,F βF + x′
i ,SβS),

very similar to the Tweedie. . .



Additional Points of Emphasis

▶ In the chapter, you will find additional discussion of the concept
of exposure and how to handle this in a GLM framework.

▶ Moreover, sometimes we only have available grouped data,
rather than data based on individual contracts or units of
analysis. This represents another complication in actuarial
applications of GLM/statistical methodologies. . .

▶ The chapter also relates frequency-severity modeling to
approaches used in related fields.
▶ For example, health economists favor Tobit models for handling

data with lots of zeros. . .



Massachusetts Automobile Claims

▶ Automobile insurance experience from the state of
Massachusetts in 2006.

▶ Since the dataset represents experience from multiple carriers,
the amount of policyholder information may be less
comprehensive than typically used by larger carriers employing
advanced analytic techniques.

▶ A random sample of 100,000 policyholders was drawn for the
analysis.

▶ The study includes only bodily injury, property damage liability,
and personal injury protection coverages.
▶ These are compulsory and thus relatively uniform in

Massachusetts.



Number of Policies by Rating Group and Territory
▶ The distribution of policies is reasonably level across territories.
▶ In contrast, the distribution by rating group is more uneven; for

example, over three-quarters of the policies are from the
“Adult” group.

Table 1: Number of Policies by Rating Group and Territory

Rating Group
Terr

1
Terr

2
Terr

3
Terr

4
Terr

5
Terr

6 Total

A - Adult 13905 14603 8600 15609 14722 9177 76616
B - Business 293 268 153 276 183 96 1269
I - Youthful with less
than 3 years experience

706 685 415 627 549 471 3453

M - Youthful with 3-6
years experience

700 700 433 830 814 713 4190

S - Senior Citizens 2806 3104 1644 2958 2653 1307 14472



Averages by Rating Group
▶ The average total loss is 127.48.
▶ We observe important differences by rating group, where

average losses for inexperienced youthful drivers are over 3
times greater than for adult drivers.

Table 2: Averages by Rating Group

Rating
Group

Total
Loss

Claim
Number

Earned
Exposure

Annual
Mileage

Total
Policies

A 115.95 0.040 0.871 12527 76616
B 159.67 0.055 0.894 14406 1269
I 354.68 0.099 0.764 12770 3453
M 187.27 0.065 0.800 13478 4190
S 114.14 0.038 0.914 7611 14472
Total 127.48 0.043 0.870 11858 100000



Averages by Territory

▶ The average total loss and the number of claims for territory 6
are about twice that for territory 1.

Table 3: Averages by Territory

Territory
Total
Loss

Claim
Number

Earned
Exposure

Annual
Mileage

Total
Policies

1 98.24 0.032 0.882 12489 18410
2 94.02 0.036 0.876 12324 19360
3 112.21 0.037 0.870 12400 11245
4 126.70 0.044 0.875 11962 20300
5 155.62 0.051 0.866 10956 18921
6 198.95 0.066 0.842 10783 11764
Total 127.48 0.043 0.870 11858 100000



Loss Distribution
▶ The left-hand panel shows the distribution of losses, and the

right-hand panel shows the same distribution on a logarithmic
scale.
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Logarithmic Loss Distribution by Factor

▶ The left-hand panel shows the distribution by rating group,
while the right-hand panel shows the distribution by territory.
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Participants now have an opportunity to explore these data on their
own

Enjoy!


